ANALYSIS QUALIFYING EXAM - AUGUST 2024

Attempt the following six problems. Please note the following:

- Throughout this exam, $L^p(X)$ denotes the L^p -space of a measure space (X, \mathcal{M}, μ) with the associated norm of a function being $||f||_p$. Subsets of \mathbb{R}^d are equipped with the Lebesgue sigma algebra and Lebesgue measure unless otherwise stated.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

(1) Let \mathcal{P} be the power set of [0, 1], and let μ denote the counting measure on the measurable space ($[0, 1], \mathcal{P}$). Define

$$\mathcal{M} = \{ E \subseteq [0, 1] : E \text{ or } E^c \text{ is countable} \}$$

(here $E^{c} = [0, 1] \setminus E$).

(a) Prove that \mathcal{M} is a σ -algebra.

Let μ_0 be the counting measure on the measurable space $([0, 1], \mathcal{M})$.

- (b) Give an example of a function $f : [0, 1] \to \mathbb{R}$ that is \mathcal{P} -measurable, but not \mathcal{M} -measurable.
- (c) Show that a function $f : [0, 1] \to \mathbb{R}$ that is integrable with respect to (\mathcal{P}, μ) is also integrable with respect to (\mathcal{M}, μ_0) .
- (2) Let $f: [0,1] \to \mathbb{R}$ be Lebesgue integrable, and suppose that $\lim_{x \to 1} f(x) = a$ for some $a \in \mathbb{R}$. Prove

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) \, dx = a.$$

Hint: do the case a = 0 first.

- (3) Prove or disprove the existence of a Lebesgue measurable set $E \subseteq [0, 1]$ with the property that $m(E \cap [0, x]) = x/2$ for every $x \in [0, 1]$.
- (4) Let $f_n \in L^1([0,1])$ and C > 0 be such that $||f_n||_1 \leq C$ for all n, and suppose that $f_n \to f$ pointwise almost everywhere.

(a) Prove that

$$\int f_n g \ dm \to \int fg \ dm$$

for every $g \in L^{\infty}([0,1])$.

(b) Is the analogous statement with $L^1(\mathbb{R})$ and $L^{\infty}(\mathbb{R})$ replacing $L^1([0,1])$ and $L^{\infty}([0,1])$ true? Give a proof or a counterexample.

(5) Let $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$. Define $f * g : \mathbb{R} \to \mathbb{C}$ by

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy$$

You may assume without proof that (f * g)(x) is well-defined for almost every $x \in \mathbb{R}$, and measurable as a function of x.

Show that f * g is in $L^p(\mathbb{R})$, and that $||f * g||_p \le ||f||_1 ||g||_p$.

(6) Recall that a function $f : [0, 1] \to \mathbb{R}$ is absolutely continuous if for any $\epsilon > 0$ there exists $\delta > 0$ such that for any n and any

$$0 \le a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n \le 1$$

with

$$\sum_{i=1}^{n} |b_i - a_i| < \delta$$

we have

$$\sum_{i=1}^{n} |f(b_i) - f(a_i)| < \epsilon.$$

Let $\alpha \in (0, 1)$. Show that the function defined by $f(x) = x^{\alpha} \sin(1/x)$ for x > 0and f(0) = 0 is not absolutely continuous on [0, 1]. Here is a picture for $\alpha = 1/2$:

Hint: do not try to use sophisticated theorems! - do the estimates directly.