ANALYSIS QUALIFYING EXAM, SPRING 2024

- Throughout this exam (X, μ) denotes an arbitrary measure space, and $L^p(\mu)$ the corresponding Lebesgue space. Also, *m* denotes the Lebesgue measure in \mathbb{R}^d , and $L^p(E)$ denotes the Lebesgue space (real-valued functions) of a subset *E* of \mathbb{R}^d with respect to *m*.
- Partial credit will be given for partially correct solutions, even if incomplete.
- The parts of problems are not equally difficult, and will not be weighted equally.
- Good luck!

Problem 1. Let E be the set of real numbers in (0, 1) that do not have a 2 in their decimal expansion.

a. Show that E is measurable.

b. What is the Lebesgue measure of E?

Problem 2. Let $f:[0,1]\times[0,1]\to\mathbb{R}$ be continuous. Suppose that $\frac{\partial f}{\partial x}$ exists and is continuous on $[0,1]\times[0,1]$. Show that the function $g:(0,1)\to\mathbb{R}$ defined by

$$g(x) = \int_0^1 f(x, y) \, dy \qquad (x \in (0, 1))$$

is differentiable and that

$$g'(x) = \int_0^1 \frac{\partial f}{\partial x}(x, y) \, dy.$$

Problem 3. Let $f \in L^2((0,\infty))$. Define $Hf: (0,\infty) \to \mathbb{R}$ by

$$Hf(x) := \int_0^\infty \frac{f(y)}{x+y} \, dy \qquad (x \in (0,\infty)).$$

a. Show that Hf is measurable.

b. Prove that there is a constant C such that

 $||Hf||_2 \le C ||f||_2.$

Here $\|\cdot\|_2$ denotes the L^2 -norm on $(0,\infty)$.

Problem 4. Let $1 , and let <math>(f_n)$ be a sequence of functions in $L^p([0,1])$ that converges almost everywhere to a function $f \in L^p([0,1])$. Suppose in addition that there is a constant M such that $||f_n||_p \leq M$ for all n.

Show that for each $g \in L^q([0,1])$, where $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\lim_{n \to \infty} \int_0^1 f_n g = \int_0^1 f g.$$

Problem 5.

a. Show that if f is a continuously differentiable function on [0, 1], then there is a sequence of polynomials (P_n) such that $P_n \to f$ and $P'_n \to f'$ uniformly on [0, 1].

b. Does this remain true if [0, 1] is replaced by \mathbb{R} ? Explain.

Problem 6. Suppose that μ is finite, and let $T : X \to X$ be measurable such that $\mu(T^{-1}(E)) = \mu(E)$ for every measurable set $E \subset X$. Let $A \subset X$ be measurable.

a. Show that if $B := A \setminus \bigcup_{n \in \mathbb{N}} T^{-n}(A)$, then the sets $T^{-n}(B), n \in \mathbb{N}$, are pairwise disjoint. Here $T^{-n}(E)$ denotes the preimage of a set $E \subset X$ under the *n*-fold composition of T with itself.

b. Deduce that almost every $x \in A$ is *recurrent*, i.e., $T^n(x) \in A$ for some $n \in \mathbb{N}$.

$\mathbf{2}$