APPLIED MATH QUALIFYING EXAM JANUARY 2019

Solve all six problems. You have 4 hours. Good luck! You need to demonstrate prociency in each area

Problem 1. Recall the Lorenz system

$$\begin{array}{rcl} \dot{x} & = & \sigma(y-x), \\ \dot{y} & = & = rx-y-xz, \\ \dot{z} & = & xy-bz, \end{array}$$

where r, σ , b are positive constants. For 0 < r < 1, show that the origin is globally asymptotically stable by considering a function $V_1 = \alpha x^2 + \beta y^2 + \gamma z^2$, for a suitable choice of constants α , β , γ . For $r \ge 1$, show by considering the function $V_2 = rx^2 + \sigma y^2 + \sigma (z-2r)^2$ that all trajectories eventually enter and then remain within a bounded region of phase space.

Problem 2. Consider the dynamical system in polar coordinates

$$\dot{r} = r(\mu + 2r^2 - r^4),$$

$$\dot{\theta} = 1 - \nu r^2 \cos \theta.$$

Find the conditions on the parameters μ and ν under which there are zero, one, and two periodic orbits. For $\nu = 0$, deduce the stability of these orbits and show the results in the (μ, r) plane. For $\nu = 1/2$, describe the types of bifurcations that occur as μ is varied.

Problem 3. The map $F(x,\mu) = 1 - \mu x^2$ has a superstable 3-cycle at a certain parameter value μ_c . Find a cubic equation for this μ_c .

Problem 4. Consider the 1-d map

$$x_{n+1} = f(x_n) = x_n + a\cos(x_n)\sin(x_n)$$

- 1. Find the fixed points x^* of the map above in the interval $[0; \pi]$.
- 2. Determine the derivative of the map.
- 3. For the fixed point x_2^* (where $x_1^* < x_2^*$) determine the value of a, denoted by a_2 , where the fixed point undergoes period doubling.
- 4. For the other fixed point x_1^* a period doubling occurs at $a_1 = -2$. Consider a small variation around x_1^* , i.e. $x_1^* = \varepsilon$ where $\varepsilon << 1$, and show that a two cycle for the map exists (for $a = a_1$ expand the map above around in x_n).

Problem 5. Consider the following heat problem on a rod of length L with source distribution F(x,t) and initial condition g(x)

$$u_t = u_{xx} + F(x, t)$$
 $x \in (0, L), t > 0.$
 $u(x, 0) = g(x),$ $x \in (0, L).$

- 1. Suppose that the rod is insulated at x = 0 and has a fixed temperature of 0 at x = L. Give the boundary conditions for this problem.
- 2. Suppose the rod contains a radioactive substance that is emitting heat at a constant rate F(x,t) = C. Give a formal solution with this source and the boundary conditions of (a).
- 3. Use the energy integral $E(t) = \int_0^L u^2 dx$ to show that this solution is unique.

Problem 6. Suppose A and B are $n \times n$ matrices with real entries and that B has rank 1. Show that the function $f: \mathbb{R} \to \mathbb{R}$ where $f(t) = \det(A + tB)$ is a line (i.e, it has form f(t) = mt + b).