Sofic Groups and Bernoulli Shifts

Lewis Bowen

UHM April 21, 2008

Cayley Graphs

Let G be a group with finite symmetric generating set S.

Cayley Graphs

Let G be a group with finite symmetric generating set S.

The **Cayley Graph** of (G, S) has vertex set G and $\forall g \in G, s \in S$, there is a directed edge from g to gs labeled s.

Let $Z \subset G$ be finite. Let $Z_r \subset Z$ be the set of $z \in Z$ such that $B_r(z) \subset Z$.

Let $Z \subset G$ be finite. Let $Z_r \subset Z$ be the set of $z \in Z$ such that $B_r(z) \subset Z$.

F is an (r, δ) -approximation to *G* if $|Z_r| \ge (1 - \delta)|Z|$.

Let $Z \subset G$ be finite. Let $Z_r \subset Z$ be the set of $z \in Z$ such that $B_r(z) \subset Z$.

F is an (r, δ) -approximation to *G* if $|Z_r| \ge (1 - \delta)|Z|$.

G is **amenable** if for every $r, \delta > 0$ there exists a finite subset $Z \subset G$ such that *Z* is an (r, δ) -approximation to (G, S).

Let $Z \subset G$ be finite. Let $Z_r \subset Z$ be the set of $z \in Z$ such that $B_r(z) \subset Z$.

F is an (r, δ) -approximation to *G* if $|Z_r| \ge (1 - \delta)|Z|$.

G is **amenable** if for every $r, \delta > 0$ there exists a finite subset $Z \subset G$ such that *Z* is an (r, δ) -approximation to (G, S).

Examples: \mathbb{Z}^d , solvable groups, Baumslag-Solitar groups. Nonamenable groups: free groups, fundamental groups of closed hyperbolic manifolds, $SL_n(\mathbb{Z})$ for $n \ge 2$.

Residually Finite Groups

If *P* is a property of groups, then a group *G* is **residually** *P* if for every $g \in G - \{e\}$, there exists a surjective homomorphism $\pi : G \to H$ such that *H* has property *P* and $\pi(g) \neq e$.

Residually Finite Groups

If *P* is a property of groups, then a group *G* is **residually** *P* if for every $g \in G - \{e\}$, there exists a surjective homomorphism $\pi : G \to H$ such that *H* has property *P* and $\pi(g) \neq e$.

All linear groups (i.e., subgroups of $GL_n(F)$ for any field F) are residually finite, (Mal'cev, 1940).

Let G be a group with finite symmetric generating set S.

Let G be a group with finite symmetric generating set S.

Let Z be a finite graph such that each edge is directed and labeled with labels in S.

Let G be a group with finite symmetric generating set S.

Let Z be a finite graph such that each edge is directed and labeled with labels in S.

For r > 0, let $Z_r \subset Z$ be the set of vertices $z \in Z$ whose radius r ball $B_r(z)$ is isomorphic (labels and all!) to the radius r ball centered at e in the Cayley graph (G, S).

Let *G* be a group with finite symmetric generating set *S*.

Let Z be a finite graph such that each edge is directed and labeled with labels in S.

For r > 0, let $Z_r \subset Z$ be the set of vertices $z \in Z$ whose radius r ball $B_r(z)$ is isomorphic (labels and all!) to the radius r ball centered at e in the Cayley graph (G, S).

Z is a sofic (r, δ) -approximation to (G, S) if $|Z_r| \ge (1 - \delta)|Z|$.

Sofic Groups (continued)

An **approximating sequence** $Z = \{Z_i\}_{i=1}^{\infty}$ for (G, S) is such that each Z_i is an (r_i, δ_i) -approximation to (G, S) where $r_i \to \infty$ and $\delta_i \to 0$.

Sofic Groups (continued)

An **approximating sequence** $\mathbf{Z} = \{Z_i\}_{i=1}^{\infty}$ for (G, S) is such that each Z_i is an (r_i, δ_i) -approximation to (G, S) where $r_i \to \infty$ and $\delta_i \to 0$.

G is **sofic** if there exists an approximating sequence for (G, S) (for some and hence every *S*). More generally, *G* is **sofic** if every finitely generated subgroup of *G* is sofic.

• Let *H* < *G* and take Shreier coset graph of *G*/*H*. Let *Z* be any finite induced subgraph of *G*/*H*.

- Let *H* < *G* and take Shreier coset graph of *G*/*H*. Let *Z* be any finite induced subgraph of *G*/*H*.
- If $H = \{e\}$ then $Z \subset G$ and we are back to the amenable case.

- Let *H* < *G* and take Shreier coset graph of *G*/*H*. Let *Z* be any finite induced subgraph of *G*/*H*.
- If $H = \{e\}$ then $Z \subset G$ and we are back to the amenable case.
- Let H < G be normal and finite index. Let Z = G/H. If the quotient map $\pi : G \to G/H$ is 1 1 on B(e, r) then Z is a (r, 0)-approximation to (G, S).

- Let *H* < *G* and take Shreier coset graph of *G*/*H*. Let *Z* be any finite induced subgraph of *G*/*H*.
- If $H = \{e\}$ then $Z \subset G$ and we are back to the amenable case.
- Let H < G be normal and finite index. Let Z = G/H. If the quotient map $\pi : G \to G/H$ is 1 1 on B(e, r) then Z is a (r, 0)-approximation to (G, S).

Theorem (Elek and Szabo, 2006)

Residually amenable groups are sofic. But there exists a finitely generated sofic group that is not residually amenable. It is not known whether or not every group is sofic.

• Let (X, μ) be a probability space.

- Let (X, μ) be a probability space.
- Let G ⊂ Aut(X, μ) be a group of measure-preserving automorphisms.

- Let (X, μ) be a probability space.
- Let G ⊂ Aut(X, μ) be a group of measure-preserving automorphisms.
- The triple (G, X, μ) is a system.

- Let (X, μ) be a probability space.
- Let G ⊂ Aut(X, μ) be a group of measure-preserving automorphisms.
- The triple (G, X, μ) is a **system**.
- Two systems (G₁, X₁, μ₁), (G₂, X₂, μ₂) are **isomorphic** if there exists a measure-space isomorphism φ : X₁ → X₂ and an isomorphism h : G₁ → G₂ with φ(gx) = h(g)φ(x) for a.e. x ∈ X₁, g ∈ G.

- Let (X, μ) be a probability space.
- Let G ⊂ Aut(X, μ) be a group of measure-preserving automorphisms.
- The triple (G, X, μ) is a **system**.
- Two systems $(G_1, X_1, \mu_1), (G_2, X_2, \mu_2)$ are **isomorphic** if there exists a measure-space isomorphism $\phi : X_1 \to X_2$ and an isomorphism $h : G_1 \to G_2$ with $\phi(gx) = h(g)\phi(x)$ for a.e. $x \in X_1, g \in G$.
- Main Problem: Classify systems up to isomorphism!

• Let *K* be a finite set, κ a probability measure on *K*.

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\} = \prod_G K.$$

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\} = \prod_G K.$$

• κ^{G} is the product measure on K^{G} .

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\} = \prod_G K.$$

- κ^{G} is the product measure on K^{G} .
- $G < Aut(K^G, \kappa^G)$: $(gx)(f) := x(g^{-1}f) \ \forall g, f \in G, x \in K^G$.

• Let *K* be a finite set, κ a probability measure on *K*.

•
$$K^G = \{x : G \to K\} = \prod_G K.$$

• κ^{G} is the product measure on K^{G} .

•
$$G < Aut(K^G, \kappa^G)$$
: $(gx)(f) := x(g^{-1}f) \ \forall g, f \in G, x \in K^G$.

• (G, K^G, κ^G) is the Bernoulli shift over G with base measure κ .

Bernoulli shifts over amenable groups

Definition

Let (K, κ) be a probability space. If there exists a countable or finite set $K' \subset K$ with $\kappa(K') = 1$ then define

$$H(\kappa) = -\sum_{k \in K'} \kappa(\{k\}) \log(\kappa(\{k\})).$$

Otherwise $H(\kappa) := +\infty$.

Bernoulli shifts over amenable groups

Definition

Let (K, κ) be a probability space. If there exists a countable or finite set $K' \subset K$ with $\kappa(K') = 1$ then define

$$H(\kappa) = -\sum_{k \in K'} \kappa(\{k\}) \log(\kappa(\{k\})).$$

Otherwise $H(\kappa) := +\infty$.

Theorem (Kolmogorov, Sinai, et al, 1958-) If *G* is amenable and $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$ then $H(\kappa_1) = H(\kappa_2)$.

Definition

G is an **Ornstein group** if whenever $(K_1, \kappa_1), (K_2, \kappa_2)$ are probability spaces with $H(\kappa_1) = H(\kappa_2)$ then $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$.

Definition

G is an **Ornstein group** if whenever $(K_1, \kappa_1), (K_2, \kappa_2)$ are probability spaces with $H(\kappa_1) = H(\kappa_2)$ then $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$.

Theorem

Finite groups are not Ornstein!

Definition

G is an **Ornstein group** if whenever $(K_1, \kappa_1), (K_2, \kappa_2)$ are probability spaces with $H(\kappa_1) = H(\kappa_2)$ then $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$.

- Finite groups are not Ornstein!
- 2 \mathbb{Z} is an Ornstein group (Ornstein, 1970).

Definition

G is an **Ornstein group** if whenever $(K_1, \kappa_1), (K_2, \kappa_2)$ are probability spaces with $H(\kappa_1) = H(\kappa_2)$ then $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$.

- Finite groups are not Ornstein!
- 2 \mathbb{Z} is an Ornstein group (Ornstein, 1970).
- Every countable amenable group is Ornstein (Ornstein, Weiss 1987).

Definition

G is an **Ornstein group** if whenever $(K_1, \kappa_1), (K_2, \kappa_2)$ are probability spaces with $H(\kappa_1) = H(\kappa_2)$ then $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$.

- Finite groups are not Ornstein!
- 2 \mathbb{Z} is an Ornstein group (Ornstein, 1970).
- Every countable amenable group is Ornstein (Ornstein, Weiss 1987).
- If G contains an Ornstein subgroup then G is itself Ornstein (Stepin, 1975).

Definition

G is an **Ornstein group** if whenever $(K_1, \kappa_1), (K_2, \kappa_2)$ are probability spaces with $H(\kappa_1) = H(\kappa_2)$ then $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$.

- Finite groups are not Ornstein!
- 2 \mathbb{Z} is an Ornstein group (Ornstein, 1970).
- Every countable amenable group is Ornstein (Ornstein, Weiss 1987).
- If G contains an Ornstein subgroup then G is itself Ornstein (Stepin, 1975).
- Open ?): Is every countable group Ornstein?

New Results

Theorem

If G is sofic, $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$ and K_1, K_2 are finite then $H(\kappa_1) = H(\kappa_2)$. If G is also Ornstein then the finiteness condition can be removed.

New Results

Theorem

If G is sofic, $(G, K_1^G, \kappa_1^G) \cong (G, K_2^G, \kappa_2^G)$ and K_1, K_2 are finite then $H(\kappa_1) = H(\kappa_2)$. If G is also Ornstein then the finiteness condition can be removed.

Theorem

If G contains a nonabelian free group then for every $(K_1, \kappa_1), (K_2, \kappa_2)$ with $H(\kappa_1)H(\kappa_2) > 0$, (G, K_1^G, κ_1^G) factors onto (G, K_2^G, κ_2^G) and vice versa (i.e., all Bernoulli shifts over G are **weakly isomorphic**).

• Let *G* be a group with finite symmetric generating set *S*.

- Let G be a group with finite symmetric generating set S.
- An *S*-graph is a set *Z* with a collection $\{T^s\}_{s \in S}$ of bijections

```
T^s: Dom(T^s) \rightarrow \operatorname{Rng}(T^s)
```

with $\text{Dom}(T^s)$, $\text{Rng}(T^s) \subset Z$.

- Let G be a group with finite symmetric generating set S.
- An *S*-graph is a set *Z* with a collection $\{T^s\}_{s \in S}$ of bijections

```
T^s: Dom(T^s) \rightarrow \operatorname{Rng}(T^s)
```

with $\text{Dom}(T^s), \text{Rng}(T^s) \subset Z$.

• For $r \ge 0$, let Z_r be the set of all $z \in Z$ such that for any $s_1, ..., s_r, t_1, ..., t_r \in S \cup \{e\}, T^{s_1}...T^{s_r}z$ is well-defined and

$$T^{s_1} \dots T^{s_r} z = T^{t_1} \dots T^{t_r} z$$

if and only if $s_1...s_r = t_1...t_r$ in *G*.

- Let G be a group with finite symmetric generating set S.
- An *S*-graph is a set *Z* with a collection $\{T^s\}_{s \in S}$ of bijections

```
T^s: Dom(T^s) \rightarrow \operatorname{Rng}(T^s)
```

with $\text{Dom}(T^s), \text{Rng}(T^s) \subset Z$.

• For $r \ge 0$, let Z_r be the set of all $z \in Z$ such that for any $s_1, ..., s_r, t_1, ..., t_r \in S \cup \{e\}, T^{s_1}...T^{s_r}z$ is well-defined and

$$T^{s_1} \dots T^{s_r} z = T^{t_1} \dots T^{t_r} z$$

if and only if $s_1...s_r = t_1...t_r$ in *G*.

• Z is an (r, δ) -approximation to (G, S) if $|Z| < \infty$ and $|Z_r| \ge (1 - \delta)|Z|$.

The *f*-invariants

Definition

Let (G, X, μ) be a system and $\alpha = (A_1, ..., A_u)$ a finite ordered partition of *X*. Let *Z* be an *S*-graph and $\beta = (B_1, ..., B_u)$ an ordered partition of *Z*.

Then $\beta \epsilon$ -approximates α if

$$\sum_{s \in S} \sum_{i,j=1}^{u} \left| \mu(A_i \cap sA_j) - \zeta(B_i \cap T^s(B_j \cap \text{Dom}(T^s))) \right| < \epsilon$$

where ζ is the uniform probability measure on *Z*. Let $\mathcal{F}A(Z, \alpha, \epsilon)$ be the set of all ordered partitions β on *Z* that ϵ -approximate α .

The *f*-invariants (continued)

Definition

Let $\mathbf{Z} = \{Z_i\}_{i=1}^{\infty}$ be a sequence of *S*-graphs with $|Z_i| \to \infty$.

$$\mathsf{F}(\mathbf{Z}, lpha, \epsilon) := \limsup_{i o \infty} rac{1}{|Z_i|} \log |\mathcal{F} \mathsf{A}(Z_i, lpha, \epsilon)|,$$

$$F(\mathbf{Z}, \alpha) := \lim_{\epsilon \to 0} F(\mathbf{Z}, \alpha, \epsilon);$$
$$f(\mathbf{Z}, \alpha) = \lim_{n \to \infty} F(\mathbf{Z}, \alpha^n)$$

where

$$\alpha^n = \bigvee_{g \in B(e,n)} g\alpha.$$

The main theorem

Definition

 $\alpha = (A_1, ..., A_u)$ is a **generating partition** if the smallest *G*-invariant σ -algebra containing α is equal to the set of all measurable subsets of *X* (up to measure zero).

The main theorem

Definition

 $\alpha = (A_1, ..., A_u)$ is a **generating partition** if the smallest *G*-invariant σ -algebra containing α is equal to the set of all measurable subsets of *X* (up to measure zero).

- If α, β are finite generating partitions then f(Z, α) = f(Z, β). Hence we can define f(Z, X, μ) = f(Z, α) for any generating partition α.
- If **Z** is an approximating sequence (so G is sofic) then $f(\mathbf{Z}, K^G, \kappa^G) = H(\kappa)$ whenever K is finite.

Definition

Top(α) is the smallest *G*-invariant topology on *X* such that every atom of α is open.

Definition

Top(α) is the smallest *G*-invariant topology on *X* such that every atom of α is open.

 α and β are **topologically equivalent** if Top(α) =Top(β). Notation:

 $\alpha =_{top} \beta.$

Definition

Top(α) is the smallest *G*-invariant topology on *X* such that every atom of α is open.

 α and β are **topologically equivalent** if Top(α) =Top(β). Notation: $\alpha =_{top} \beta$.

Definition (Rohklin distance) $d(\alpha,\beta) := H(\alpha|\beta) + H(\beta|\alpha) = 2H(\alpha \lor \beta) - H(\alpha) - H(\beta).$

Definition

Top(α) is the smallest *G*-invariant topology on *X* such that every atom of α is open.

 α and β are **topologically equivalent** if Top(α) =Top(β). Notation: $\alpha =_{top} \beta$.

Definition (Rohklin distance) $d(\alpha,\beta) := H(\alpha|\beta) + H(\beta|\alpha) = 2H(\alpha \lor \beta) - H(\alpha) - H(\beta).$

Proposition

If α is generating then the set of all partitions β such that $\beta =_{top} \alpha$ is dense in the space of all generating partitions.

Definition

α refines β if $\forall A \in \alpha$, $\exists B \in \beta$ such that $A \subset B$. Notation: $\alpha \geq \beta$.

Definition

 α refines β if $\forall A \in \alpha$, $\exists B \in \beta$ such that $A \subset B$. Notation: $\alpha \geq \beta$.

Definition

 σ is a **simple splitting of** α if for some generator $s \in S = \{s_1^{\pm 1}, ..., s_r^{\pm 1}\}, \alpha \leq \sigma \leq \alpha \lor s\alpha$.

Definition

 α refines β if $\forall A \in \alpha$, $\exists B \in \beta$ such that $A \subset B$. Notation: $\alpha \geq \beta$.

Definition

 σ is a **simple splitting of** α if for some generator $s \in S = \{s_1^{\pm 1}, ..., s_r^{\pm 1}\}, \alpha \leq \sigma \leq \alpha \vee s\alpha$. σ is a **splitting of** α if it can be obtained from a sequence of simple splittings.

Definition

 α refines β if $\forall A \in \alpha$, $\exists B \in \beta$ such that $A \subset B$. Notation: $\alpha \geq \beta$.

Definition

 σ is a **simple splitting of** α if for some generator $s \in S = \{s_1^{\pm 1}, ..., s_r^{\pm 1}\}, \alpha \leq \sigma \leq \alpha \lor s\alpha.$ σ is a **splitting of** α if it can be obtained from a sequence of simple splittings.

Proposition

If $\alpha =_{top} \beta$ then for all n sufficiently large, α^n is a splitting of β (as well as of α).

Theorem (Monotonicity under Splittings) If σ is a splitting of α , then $F(\mathbf{Z}, \sigma) \leq F(\mathbf{Z}, \alpha)$. Theorem (Monotonicity under Splittings)

If σ is a splitting of α , then $F(\mathbf{Z}, \sigma) \leq F(\mathbf{Z}, \alpha)$.

Corollary $f(\mathbf{Z}, \alpha) = \lim_{n \to \infty} F(\mathbf{Z}, \alpha^n) = \inf_n F(\mathbf{Z}, \alpha^n).$ Theorem (Monotonicity under Splittings)

If σ is a splitting of α , then $F(\mathbf{Z}, \sigma) \leq F(\mathbf{Z}, \alpha)$.

Corollary
$$f(\mathbf{Z}, \alpha) = \lim_{n \to \infty} F(\mathbf{Z}, \alpha^n) = \inf_n F(\mathbf{Z}, \alpha^n).$$

Theorem

 $f(\mathbf{Z}, \cdot)$ is upper semi-continuous on the space of partitions.

Theorem (Monotonicity under Splittings)

If σ is a splitting of α , then $F(\mathbf{Z}, \sigma) \leq F(\mathbf{Z}, \alpha)$.

Corollary
$$f(\mathbf{Z}, \alpha) = \lim_{n \to \infty} F(\mathbf{Z}, \alpha^n) = \inf_n F(\mathbf{Z}, \alpha^n).$$

Theorem

 $f(\mathbf{Z}, \cdot)$ is upper semi-continuous on the space of partitions.

Corollary

If α, β are generating partitions then $f(\mathbf{Z}, \alpha) = f(\mathbf{Z}, \beta)$.