
Sofic Groups and Bernoulli Shifts

Lewis Bowen

UHM
April 21, 2008

Lewis Bowen (University of Hawaii) Sofic Groups and Bernoulli Shifts 1 / 19



Cayley Graphs

Let G be a group with finite symmetric generating set S.

The Cayley Graph of (G,S) has vertex set G and ∀g ∈ G, s ∈ S, there
is a directed edge from g to gs labeled s.
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Amenable Groups

Let Z ⊂ G be finite. Let Zr ⊂ Z be the set of z ∈ Z such that
Br (z) ⊂ Z .

F is an (r , δ)-approximation to G if |Zr | ≥ (1− δ)|Z |.

G is amenable if for every r , δ > 0 there exists a finite subset Z ⊂ G
such that Z is an (r , δ)-approximation to (G,S).

Examples: Zd , solvable groups, Baumslag-Solitar groups.
Nonamenable groups: free groups, fundamental groups of closed
hyperbolic manifolds, SLn(Z) for n ≥ 2.
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Residually Finite Groups

If P is a property of groups, then a group G is residually P if for every
g ∈ G − {e}, there exists a surjective homomorphism π : G→ H such
that H has property P and π(g) 6= e.

All linear groups (i.e., subgroups of GLn(F ) for any field F ) are
residually finite, (Mal’cev, 1940).
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Sofic Groups

Let G be a group with finite symmetric generating set S.

Let Z be a finite graph such that each edge is directed and labeled
with labels in S.

For r > 0, let Zr ⊂ Z be the set of vertices z ∈ Z whose radius r ball
Br (z) is isomorphic (labels and all!) to the radius r ball centered at e in
the Cayley graph (G,S).

Z is a sofic (r , δ)-approximation to (G,S) if |Zr | ≥ (1− δ)|Z |.
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Sofic Groups (continued)

An approximating sequence Z = {Zi}∞i=1 for (G,S) is such that each
Zi is an (ri , δi)-approximation to (G,S) where ri →∞ and δi → 0.

G is sofic if there exists an approximating sequence for (G,S) (for
some and hence every S). More generally, G is sofic if every finitely
generated subgroup of G is sofic.
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Examples

Let H < G and take Shreier coset graph of G/H. Let Z be any
finite induced subgraph of G/H.

If H = {e} then Z ⊂ G and we are back to the amenable case.

Let H < G be normal and finite index. Let Z = G/H. If the
quotient map π : G→ G/H is 1− 1 on B(e, r) then Z is a
(r ,0)-approximation to (G,S).

Theorem (Elek and Szabo, 2006)
Residually amenable groups are sofic. But there exists a finitely
generated sofic group that is not residually amenable. It is not known
whether or not every group is sofic.
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Dynamical Systems

Let (X , µ) be a probability space.

Let G ⊂ Aut(X , µ) be a group of measure-preserving
automorphisms.

The triple (G,X , µ) is a system.

Two systems (G1,X1, µ1), (G2,X2, µ2) are isomorphic if there
exists a measure-space isomorphism φ : X1 → X2 and an
isomorphism h : G1 → G2 with φ(gx) = h(g)φ(x) for a.e.
x ∈ X1,g ∈ G.

Main Problem: Classify systems up to isomorphism!
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Bernoulli Shifts

Let K be a finite set, κ a probability measure on K .

K G = {x : G→ K} =
∏

G K .

κG is the product measure on K G.

G < Aut(K G, κG): (gx)(f ) := x(g−1f ) ∀g, f ∈ G, x ∈ K G.

(G,K G, κG) is the Bernoulli shift over G with base measure κ .
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Bernoulli shifts over amenable groups

Definition
Let (K , κ) be a probability space. If there exists a countable or finite
set K ′ ⊂ K with κ(K ′) = 1 then define

H(κ) = −
∑
k∈K ′

κ({k}) log(κ({k})).

Otherwise H(κ) := +∞.

Theorem (Kolmogorov, Sinai, et al, 1958-)

If G is amenable and (G,K G
1 , κ

G
1 ) ∼= (G,K G

2 , κ
G
2 ) then H(κ1) = H(κ2).
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The converse

Definition
G is an Ornstein group if whenever (K1, κ1), (K2, κ2) are probability
spaces with H(κ1) = H(κ2) then (G,K G

1 , κ
G
1 ) ∼= (G,K G

2 , κ
G
2 ).

Theorem
1 Finite groups are not Ornstein!
2 Z is an Ornstein group (Ornstein, 1970).
3 Every countable amenable group is Ornstein (Ornstein, Weiss

1987).
4 If G contains an Ornstein subgroup then G is itself Ornstein

(Stepin, 1975).
5 (Open ?): Is every countable group Ornstein?
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New Results

Theorem
If G is sofic, (G,K G

1 , κ
G
1 ) ∼= (G,K G

2 , κ
G
2 ) and K1,K2 are finite then

H(κ1) = H(κ2). If G is also Ornstein then the finiteness condition can
be removed.

Theorem
If G contains a nonabelian free group then for every (K1, κ1), (K2, κ2)
with H(κ1)H(κ2) > 0, (G,K G

1 , κ
G
1 ) factors onto (G,K G

2 , κ
G
2 ) and vice

versa (i.e., all Bernoulli shifts over G are weakly isomorphic).
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Sofic Groups (revisited)

Let G be a group with finite symmetric generating set S.

An S-graph is a set Z with a collection {T s}s∈S of bijections

T s : Dom(T s)→ Rng(T s)

with Dom(T s),Rng(T s) ⊂ Z .

For r ≥ 0, let Zr be the set of all z ∈ Z such that for any
s1, .., sr , t1, .., tr ∈ S ∪ {e}, T s1 ...T sr z is well-defined and

T s1 ...T sr z = T t1 ...T tr z

if and only if s1...sr = t1...tr in G.

Z is an (r , δ)-approximation to (G,S) if |Z | <∞ and
|Zr | ≥ (1− δ)|Z |.
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The f -invariants

Definition
Let (G,X , µ) be a system and α = (A1, ..,Au) a finite ordered partition
of X . Let Z be an S-graph and β = (B1, ...,Bu) an ordered partition of
Z .
Then β ε-approximates α if

∑
s∈S

u∑
i,j=1

∣∣∣µ(Ai ∩ sAj)− ζ
(
Bi ∩ T s(Bj ∩ Dom(T s))

)∣∣∣ < ε

where ζ is the uniform probability measure on Z .
Let FA(Z , α, ε) be the set of all ordered partitions β on Z that
ε-approximate α.
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The f -invariants (continued)

Definition
Let Z = {Zi}∞i=1 be a sequence of S-graphs with |Zi | → ∞.

F (Z, α, ε) := lim sup
i→∞

1
|Zi |

log |FA(Zi , α, ε)|,

F (Z, α) := lim
ε→0

F (Z, α, ε),

f (Z, α) = lim
n→∞

F (Z, αn)

where
αn =

∨
g∈B(e,n)

gα.
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The main theorem

Definition
α = (A1, ...,Au) is a generating partition if the smallest G-invariant
σ-algebra containing α is equal to the set of all measurable subsets of
X (up to measure zero).

Theorem
If α, β are finite generating partitions then f (Z, α) = f (Z, β). Hence
we can define f (Z,X , µ) = f (Z, α) for any generating partition α.
If Z is an approximating sequence (so G is sofic) then
f (Z,K G, κG) = H(κ) whenever K is finite.
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we can define f (Z,X , µ) = f (Z, α) for any generating partition α.
If Z is an approximating sequence (so G is sofic) then
f (Z,K G, κG) = H(κ) whenever K is finite.
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Proof Sketch

Definition
Top(α) is the smallest G-invariant topology on X such that every atom
of α is open.

α and β are topologically equivalent if Top(α) =Top(β). Notation:
α =top β.

Definition (Rohklin distance)
d(α, β) := H(α|β) + H(β|α) = 2H(α ∨ β)− H(α)− H(β).

Proposition
If α is generating then the set of all partitions β such that β =top α is
dense in the space of all generating partitions.
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Proof Sketch

Definition
α refines β if ∀A ∈ α, ∃B ∈ β such that A ⊂ B. Notation: α ≥ β.

Definition
σ is a simple splitting of α if for some generator
s ∈ S = {s±1

1 , ..., s±1
r }, α ≤ σ ≤ α ∨ sα.

σ is a splitting of α if it can be obtained from a sequence of simple
splittings.

Proposition
If α =top β then for all n sufficiently large, αn is a splitting of β (as well
as of α).
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Theorem (Monotonicity under Splittings)
If σ is a splitting of α, then F (Z, σ) ≤ F (Z, α).

Corollary
f (Z, α) = limn→∞ F (Z, αn) = infn F (Z, αn).

Theorem
f (Z, ·) is upper semi-continuous on the space of partitions.

Corollary
If α, β are generating partitions then f (Z, α) = f (Z, β).
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