
University of Hawai‘i at Mānoa

Master of Arts in Mathematics

Plan B Project Report

Nondeterministic automatic
complexity of Fibonacci words

Author:
Calvin K. Bannister

Supervisor:
Bjorn Kjos-Hanssen

August 11, 2023

Abstract

Automatic complexity rates can be thought of as a measure of ran-
domness of a computer program for some given automaton (machine).
By creating a scale on the closed unit interval I = [0, 1], that ranges from
periodic to random, we can quantify how complex a program can be. If
the rate is strictly between 0 and 1/2 then we call it intermediate. In end
of his paper [2] Dr. Kjos-Hanssen conjectured that the non determinis-
tic automatic complexity of an infinite Fibonacci word (infinite fibonacci
string) has a particular upper bound. In this paper we examine infinite fi-
bonacci words and measure their complexity provided some corresponding
non-deterministic finite automaton.

1 Introduction

Shallit and Wang [3] introduced the theory and ideas behind automatic complex-
ity, which has been studied in [1] and by Dr. Kjos-Hanssen and his students.
Automatic complexity is studied in a branch of computer science called au-
tomata theory that deals with the study of abstract machines/automata along
with computational problems that can be solved when using them. The idea
of complexity (or randomness) deficiency comes from the study of Kolmogorov
complexity. Kolmogorov complexity of an object, such as a piece of text, is
the length of the shortest computer program (in a predetermined programming
language) that produces the object as output. In this paper we prove the con-
jecture that was at the end of [2], and we show that for an infinite Fibonacci
word the non-deterministic automatic complexity can be no greater than 1/ϕ2.
Let’s begin by defining what is a non deterministic finite automaton.

Definition 1. Let Σ be a finite set (an alphabet) and let Q be a finite set whose
elements are states. A nondeterministic finite automaton (NFA) is a 5 - tuple
M = (Q,Σ, δ, qo, F). The transition function δ : Q × Σ → P(Q) maps each
(q, b) ∈ Q × Σ to a subset of Q. Within Q we find the initial state q0 ∈ Q and
the set of final states F ⊂ Q. The language accepted by M is

L(M) = {x ∈ Σ∗|δ(q0, x)
⋂

F ̸= ∅}

where Σ∗ :=
⋃

n∈N Σn is the set of all words of length n for all natural
numbers n.

Example 1. Define the following sets Σ = {0,1}, Q = {q0, q1, q2}, F = {q1, q2}
and suppose we have the non-deterministic finite automaton below (For this rest
of this paper we will refer to them as an NFA).

1

q0start

q1

q2

0

1

0

For our transition function δ

δ(q0,0) = {q1, q2}

δ(q0,1) = ∅
δ(q1,1) = {q1}.

Looking at the first example, δ(q0,0) tells us that if we start at the initial
state q0 and take path 0 then the only set of states that contains such a path
is the set {q1, q2}. The second set is empty since both edges have the 0 path
coming from the start q0. For the last set, the only path with such properties is
if we take the loop at q1.

The language accepted by M is the set

L(M) = {0,01N : N ∈ Z+}.
Definition 2. Let L(M) be the language recognized by the automaton M . Let
x be a sequence of finite length n. The (unique-acceptance) nondeterministic
automatic complexity AN (w) = ANu(w) of a word w is the minimum number
of states of an NFA M such that M accepts w and the number of walks along
which M accepts words of length |w| is 1 i.e.

the exact-acceptance nondeterministic automatic complexity AN (w) = ANe
(w)

of a word w is the minimum number of states of an NFA M such that M accepts
w and L(M)

⋂
Σ|w| = {w}.

Example 2. Let Σ = {0,1} and x = 01111 ∈ Σ∗

q0start

q1

0

1

2

then AN (01111,Σ) ≤ 2.

Definition 3. Fix a finite alphabet Σ. For an infinite word x ∈ Σ∞, let x | n
denote the prefix of x of length n. Let AN : Σ∗ −→ N. Then the upper nonde-
terministic automatic complexity rate of x is

AN (x) = lim sup
n→∞

AN (x | n)

n
.

Nondeterministic automatic complexity has a rate of 0 < AN (x) < 1
2 which is

called intermediate. There is also lower nondeterministic automatic complexity,
however for the purpose of this paper we will only focus on upper nondeter-
ministic automatic complexity to help prove the theorem that is central to this
paper.

Definition 4. (Fibonacci numbers)
The nth Fibonacci number fn is defined by the following recursion

fn =

 0 n = 0
1 n = 1
fn = fn−1 + fn−2 n ≥ 2

This is the standard recursive definition for finding the nth Fibonacci num-
ber. Let’s perform a few iterations of this function up to f5.

f0 = 0

f1 = 1

f2 = 1

f3 = 2

f4 = 3

f5 = 5

Definition 5. (Fibonacci words) For a Fibonacci word Fn

Fn =


ε, n = 0
1 n = 1
0 n = 2
Fn = Fn−1Fn−2 n ≥ 3

In order to achieve the next word we concatenate the previous two. Similarly
with the Fibonacci numbers let’s compute some values of this function up to
n = 5 starting at F3.

F3 = 01

F4 = 010

F5 = 01001

3

Definition 6. For n ≥ 0 and 0 ≤ k ≤ n we let ⟨k⟩n = Fn−k we also write
||k||n = |⟨k⟩n| as the length of ⟨k⟩n. When n is understood from context we
write ⟨k⟩ = ⟨k⟩n and ||k||n = ||k||.

Example 3. Suppose n = 7 and k = 3 then

⟨3⟩7 = F4 = 010 and |⟨3⟩|7 = |F4| = 3.

Note that the string F4 has the same length of Fibonacci number f4 = 3.
In general the string Fn−k has the length of the n − k Fibonacci number. This
result was proven in the paper [2] via induction by Dr. Kjos-Hanssen. Also to
decompose Fibonacci words so that it’s consistent with how we defined them we
do the following

⟨k⟩ = ⟨k + 1⟩⟨k + 2⟩

Fn−k = Fn−(k+1)Fn−(k+2)

Definition 7 (Fibonacci Constant). Define ϕ = 1+
√
5

2 to be to positive root of
the polynomial f(x) = x2 − x− 1.

Definition 8 (Golden ratio). The ratio between terms of the Fibonacci sequence
is

lim
n→∞

fn
fn−1

= ϕ ⇐⇒ lim
n→∞

fn−1

fn
=

1

ϕ
.

Next we will need a lemma involving powers of 1
ϕ , that will be useful in the

main result.

Definition 9 (The Infinite Fibonacci Word). The infinite Fibonacci word F∞
is the fixed point of the morphism Φ : Σ∗ 7−→ Σ∗ such that

0 7−→
Φ

01

01 7−→
Φ

0

and Φ(uv) = Φ(u)Φ(v) for u, v ∈ Σ∗. This word indeed exists and was
proven in [2] as Lemma 7.7.

Lemma 1. For each c ∈ N

lim
n→∞

c−1∏
k=0

fn−k

fn−(k−1)
=

1

ϕc

Proof. Suppose c ∈ N. It’s a well known fact that

lim
n→∞

fn−1

fn
=

1

ϕ
. (1)

4

Since we have a finite product that is independent of n, and the product of
each of the limit exists provided Equation (1) we are permitted to swap the two
yielding the following result

lim
n→∞

c−1∏
k=0

fn−k

fn−(k−1)
=

c−1∏
k=0

lim
n→∞

fn−k

fn−(k−1)
=

c−1∏
k=0

1

ϕ
=

1

ϕc
.

Theorem 1. For n ≥ 5 the equation

xfn−1 + yfn = 2(fn−1 + fn)

for non-negative integers x, y, has the unique solution x = y = 2.

Proof. For x = 0

y =
2(fn−1+fn)

fn
=

2fn−1 + 2fn
fn

= 2
fn−1

fn
+ 2 ∈ (3, 4)

provided that n ≥ 4 otherwise y will be an integer.
For x = 1

y =
fn−1

fn
+ 2 ∈ (2, 3)

provided that n ≥ 3.
For y = 0

x = 2 + 2
fn

fn−1
∈ (5, 6)

provided that n ≥ 5.
For y = 1

x = 2 +
fn

fn−1
∈ (3, 4)

provided that n ≥ 4.
For x > 2

y =
fn−1

fn
(2− x) + 2 /∈ N

provided that n ≥ 3.
For y > 2

x =
fn

fn−1
(2− y) + 2 /∈ N

provided that n ≥ 4.
For the cases when x, y > 2 and when n is large enough the respective

outputs will be elements in the set Q \ Z+. This can be seen more easily in
desmos as a line graph where the ratio of Fibonacci numbers is the slope m,
2 = b is the y-intercept, and x, y are independent variables respectively. Thus

5

we can conclude that x = y = 2 is the only solution with non-negative integers
that satisfies the equation.

Now we begin to show the main result. But first in order to build some
intuition on how we can create the desired bound we first begin by looking at a
simpler case.

Theorem 2. AN (Fn) ≤ 1
ϕ2 + 1

ϕ6 .

Proof. We exploit the length of the Fibonacci words via decomposition. Recall
the algorithm for breaking down an arbitrary Fibonacci word ⟨k⟩ = ⟨k+1⟩⟨k+2⟩.
For this example we let n = 9 so we have ⟨k⟩9. Decomposing we will have the
following decomposition

⟨0⟩ = ⟨1⟩⟨2⟩ = ⟨2⟩⟨3⟩⟨2⟩

= ⟨3⟩⟨4⟩⟨3⟩⟨2⟩

= ⟨4⟩⟨5⟩⟨4⟩⟨3⟩⟨2⟩

= ⟨4⟩⟨5⟩⟨5⟩⟨6⟩⟨3⟩⟨2⟩

= ⟨4⟩⟨5⟩⟨6⟩⟨7⟩⟨6⟩⟨3⟩⟨2⟩

= (⟨4⟩⟨4⟩⟨7⟩) ⟨6⟩ (⟨3⟩⟨3⟩⟨4⟩)

Now we count the length of each ⟨k⟩9 which will correspond to a certain number
of states. This will be key in constructing the automaton.

|⟨4⟩|9 = 5

|⟨3⟩|9 = 8

|⟨7⟩|9 = 1

|⟨6⟩|9 = 2

|⟨0⟩|9 = 34

The corresponding automaton for this example would have at most |⟨0⟩| = 34
states, but the minimum number of states needed comes from the sum

AN (F9) = |⟨4⟩|9 + |⟨3⟩9|+ |⟨6⟩|9 = 15.

The automaton being built can be thought of as three pieces. For the first
piece, in ⟨4⟩⟨4⟩⟨7⟩ we avoid over counting the number of states needed by looping
around ⟨4⟩ twice, and then walking along one more edge which corresponds to
⟨7⟩. This will place us one state ahead of the start state, and is valid since

⟨4⟩ = ⟨5⟩⟨6⟩ = ⟨6⟩⟨7⟩⟨6⟩ = ⟨7⟩⟨8⟩⟨7⟩⟨6⟩

which tells us ⟨7⟩ is a prefix of ⟨4⟩. For rest of this paper we will use ≤p to
denote ”is a prefix of”.

6

Next ⟨6⟩ behaves like a bridge which will connect us to what we are about
to see is another loop. Repeat a similar process in ⟨3⟩⟨3⟩⟨4⟩; go around ⟨3⟩
hitting the 8 states twice, and then end 5 states from the connected edge which
is the accepted state. It should be clear that ⟨4⟩ is a prefix of ⟨3⟩. So via this
decomposition we see that the corresponding automaton can be thought of as
two cycles adjoined by a ”bridge”. More explicitly we can write a table for a
transition function δ9 as:

States (q) Input {0,1} Next State δ(q, a)
qo (start) 0 q1
q1 1 q2
q1 0 q5
q2 0 q3
q3 0 q4
q4 1 q0
q5 1 q6
q6 0 q7
q7 1 q8
q8 0 q9
q9 0 q10
q10 1 q11
q11 0 q12
q12 1 q13
q13 (acpt. state) 0 q6

This tells us the upper non-deterministic automatic complexity when n = 9
is

AN (F9)

|⟨0⟩|
≤ 5 + 8 + 2

|⟨0⟩|
=

15

34
≈ 0.441

which gives us an intermediate complexity rate.

Now generalizing this

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩)︸ ︷︷ ︸
fn−4 state

⟨6⟩︸︷︷︸
fn−6 state

(⟨3⟩⟨3⟩⟨4⟩)︸ ︷︷ ︸
fn−3 state

note that the fn−4 state comes from the fact that |⟨4⟩| = |Fn−4| = fn−4

which tells us that it indeed has fn−4 many states in that cycle. We can make
similar calculations and deductions for ⟨6⟩ and ⟨4⟩ which will give us fn−6 and
fn−4 many states respectively.

Now running through all n ≥ 9, applying definition 3 along with Lemma
1 we will have the following non deterministic automatic complexity:

lim sup
n→∞

AN (Fn)

fn
≤ lim sup

n→∞

fn−3 + fn−6 + fn−4

fn

7

= lim sup
n→∞

fn−2 + fn−6

fn
=

1

ϕ2
+

1

ϕ6
≈ 0.412.

Theorem 3. AN (F∞) ≤ 1
ϕ2

Proof. We begin we with the last decomposition from Theorem 2, and manip-
ulate the left side and middle term while (⟨3⟩⟨3⟩⟨4⟩) remains fixed. Performing
this algorithm will give us a corresponding sequence of automatons. Decompos-
ing even further we have:

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩)⟨6⟩(⟨3⟩⟨3⟩⟨4⟩)

⟨0⟩ = ⟨4⟩⟨4⟩⟨7⟩⟨7⟩⟨8⟩(⟨3⟩⟨3⟩⟨4⟩)

⟨0⟩ = ⟨4⟩⟨4⟩⟨7⟩⟨8⟩⟨9⟩⟨8⟩(⟨3⟩⟨3⟩⟨4⟩)

= (⟨4⟩⟨4⟩⟨6⟩)︸ ︷︷ ︸
fn−4 state

⟨9⟩⟨8⟩︸ ︷︷ ︸
fn−7 state

(⟨3⟩⟨3⟩⟨4⟩)︸ ︷︷ ︸
fn−3 state

Even though concatenating Fibonacci words is not commutative (they are
actually almost commutative) ⟨9⟩⟨8⟩ still gives fn−7 states since

|⟨9⟩⟨8⟩| = |⟨9⟩|+ |⟨8⟩| = |⟨8⟩|+ |⟨9⟩| = |⟨8⟩⟨9⟩| = |⟨7⟩|.

Again letting n → ∞ we will achieve a smaller bound of AN (Fn)

lim sup
n→∞

AN (Fn)

fn
≤ lim sup

n→∞

fn−3 + fn−7 + fn−4

fn

lim sup
n→∞

fn−2 + fn−7

fn
=

1

ϕ2
+

1

ϕ7
.

Also note that the left portion on the right hand side of this equation

⟨0⟩ = (⟨4⟩⟨4⟩⟨6⟩)︸ ︷︷ ︸
fn−4 state

⟨9⟩⟨8⟩︸ ︷︷ ︸
fn−7 state

(⟨3⟩⟨3⟩⟨4⟩)︸ ︷︷ ︸
fn−3 state

will give us the fn−4 state in the limit, since |⟨4⟩| is greater in length which
implies more states. Similarly we have the fn−3 state that remains fixed on
the far right when taking the limit, and then all the interesting changes happen
in the middle state via construction. When computing the non deterministic
automatic complexity this permits us to have the fn−2 state plus some extra
bit that we expect to converge to 0 for n large enough (see Figure 1).

Regrouping we can again have a better bound

⟨0⟩ = (⟨4⟩⟨4⟩⟨6⟩⟨9⟩)︸ ︷︷ ︸
fn−4 state

⟨8⟩︸︷︷︸
fn−8 state

(⟨3⟩⟨3⟩⟨4⟩)︸ ︷︷ ︸
fn−3 state

.

8

This works since ⟨6⟩⟨9⟩ = ⟨7⟩⟨8⟩⟨9⟩ ≤p ⟨4⟩.

lim sup
n→∞

AN (Fn)

n
≤ lim sup

n→∞

fn−2 + fn−8

fn
=

1

ϕ2
+

1

ϕ8
.

Expanding, regrouping, and taking the limit again, we achieve a better
bound that will work since ⟨6⟩⟨9⟩⟨9⟩ = ⟨7⟩⟨8⟩⟨9⟩⟨9⟩ ≤p ⟨4⟩.

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩⟨8⟩⟨9⟩⟨9⟩) ⟨10⟩ (⟨3⟩⟨3⟩⟨4⟩)

lim sup
n→∞

AN (Fn)

n
≤ lim sup

n→∞

fn−2 + fn−10

fn
=

1

ϕ2
+

1

ϕ10
.

From this point we only pull apart the middle piece, and of the two new
parts the words labeled ⟨2m − 1⟩ for m ≥ 6 are grouped with the fn−4 state
while the other of the form ⟨2m⟩ for m ≥ 6 becomes isolated. Putting this into
effect will give us the following

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩⟨8⟩⟨9⟩⟨9⟩⟨11⟩) ⟨12⟩ (⟨3⟩⟨3⟩⟨4⟩)

lim sup
n→∞

AN (Fn)

fn
≤ lim sup

n→∞

fn−2 + fn−12

fn
=

1

ϕ2
+

1

ϕ12
.

Again expanding, regrouping, and taking the limit

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩⟨8⟩⟨9⟩⟨9⟩⟨11⟩⟨13⟩) ⟨14⟩ (⟨3⟩⟨3⟩⟨4⟩)

lim sup
n→∞

AN (Fn)

fn
≤ lim sup

n→∞

fn−2 + fn−14

fn
=

1

ϕ2
+

1

ϕ14
.

One last time expanding, regrouping, and taking the limit will produce:

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩⟨8⟩⟨9⟩⟨9⟩⟨11⟩⟨13⟩⟨15⟩) ⟨16⟩ (⟨3⟩⟨3⟩⟨4⟩)

lim sup
n→∞

AN (Fn)

fn
≤ lim sup

n→∞

fn−2 + fn−16

fn
=

1

ϕ2
+

1

ϕ16
.

Generalizing this pattern we are able to write our decomposition as

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩⟨8⟩⟨9⟩⟨9⟩⟨11⟩⟨13⟩⟨15⟩⟨17⟩ . . . ⟨2k − 1⟩) ⟨2k⟩ (⟨3⟩⟨3⟩⟨4⟩)

⟨0⟩ = (⟨4⟩⟨4⟩⟨7⟩⟨9⟩⟨9⟩
k−1∏
i=5

⟨2i+ 1⟩) ⟨2k⟩ (⟨3⟩⟨3⟩⟨4⟩)

We show this key part of our decomposition to be true via induction.

9

Claim 1. (
k−1∏
i=5

⟨2i+ 1⟩

)
⟨2k⟩ = ⟨10⟩

Base Case: If k = 6 then

5∏
i=5

⟨2i+ 1⟩ ⟨12⟩ = ⟨11⟩⟨12⟩ = ⟨10⟩.✓

Induction Hypothesis: Suppose

k−1∏
i=5

⟨2i+ 1⟩) ⟨2k⟩ = ⟨10⟩

is true for k ≥ 6

Inductive step: k → k + 1
Substituting k + 1 for k we will have

k∏
i=5

⟨2i+1⟩) ⟨2(k+1)⟩ =
k−1∏
i=5

⟨2i+1⟩) ⟨2k + 1⟩⟨2k + 2⟩︸ ︷︷ ︸
⟨2k⟩

=

k−1∏
i=5

⟨2i+1⟩ ⟨2k⟩ = ⟨10⟩.✓

Continuing in this manner the bound for ĀN (f (2)) can be achieved in the
limit

lim sup
n→∞

AN (Fn)

fn
≤ lim sup

k→∞

(
1

ϕ2
+

1

ϕ2k

)
=

1

ϕ2
.

Since the NFA consists of a cycle of finite length containing the start state,
followed by another cycle that also has finite length containing the final state
and nothing else, then there will be a unique walk of finite length from the start
state to the final state since

xfn−1 + yfn = 2(fn−1 + fn)

has the unique solution x = y = 2 for n ≥ 5 by Theorem 1.

10

start

. . .

. . .

. . .

fn−2k . . .

. . .

fn−4 fn−3

Figure 1: The corresponding automaton witnessing the automatic complexity
of an infinite Fibonacci word F∞. When computing AN (x) as n → ∞ the
corresponding automaton will have more states in the two big cycles while the
edge with the single state that behaves as a bridge can be ”ignored”.

References

[1] Liam Jordon and Philippe Moser. Normal sequences with non-maximal
automatic complexity. In 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 213 of
LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 47, 16. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2021.

[2] Bjørn Kjos-Hanssen. Automatic complexity of Fibonacci and Tribonacci
words. Discrete Appl. Math., 289:446–454, 2021.

[3] Jeffrey Shallit and Ming-Wei Wang. Automatic complexity of strings. vol-
ume 6, pages 537–554. 2001. 2nd Workshop on Descriptional Complexity of
Automata, Grammars and Related Structures (London, ON, 2000).

11

