Formal marginalia in computability theory

Bjørn Kjos-Hanssen

\qquad
ASL Special Session on Computability Theory

May 15, 2024, 3-3:20pm
ASL Annual Meeting, lowa State University

Abstract

Formal marginalia are formal proofs of small parts of a mathematical theorem or publication.

Abstract

Formal marginalia are formal proofs of small parts of a mathematical theorem or publication. Research in computability theory makes extensive use of Church's thesis, making full formalization laborious.

Abstract

Formal marginalia are formal proofs of small parts of a mathematical theorem or publication. Research in computability theory makes extensive use of Church's thesis, making full formalization laborious. I present some examples of formal marginalia in Lean for two recent papers:

- my paper A tractable case of the Turing automorphism problem, 2024
- Kenneth Gill, Probabilistic automatic complexity of finite strings, 2024

Turing automorphism problem

- Does a nontrivial automorphism of D_{T} exist? (How about $D_{t t}$?)

Turing automorphism problem

- Does a nontrivial automorphism of D_{T} exist? (How about $D_{t t}$?)
- Does a "simple" nontrivial automorphism exist such as $A \mapsto \bar{A}$?

My claims

Announced	Published	Result
2014	2018	no bijection of ω induces a nontrivial automorphism of D_{T}
2019	2024	no bi-uniformly E_{0}-invariant Cantor homeomorphism induces a nontrivial automorphism of $D_{T}{ }^{1}$

${ }^{1}$ It now seems that the claim should be $D_{t t}$ not $D_{T \text {. }}$

Key lemma for 2019/2024 result

Key lemma for 2019/2024 result

Lemma
If $\Theta: 2^{\omega} \rightarrow 2^{\omega}$ is a homeomorphism and $S^{*} A(n)=A(n+1)$, and
$\Theta \circ S^{*} \circ \Theta^{-1}$ is computable, then Θ is computable.

Key lemma for 2019/2024 result

Lemma
If $\Theta: 2^{\omega} \rightarrow 2^{\omega}$ is a homeomorphism and $S^{*} A(n)=A(n+1)$, and
$\Theta \circ S^{*} \circ \Theta^{-1}$ is computable, then Θ is computable.

- Proof idea: if $\Theta \circ S^{*}=\Phi \circ \Theta$ and $G(A)=\Theta^{A}(0)$ then $\Theta^{A}(n)=G\left(\Phi^{n} A\right)$.

Key lemma for 2019/2024 result

Lemma
If $\Theta: 2^{\omega} \rightarrow 2^{\omega}$ is a homeomorphism and $S^{*} A(n)=A(n+1)$, and
$\Theta \circ S^{*} \circ \Theta^{-1}$ is computable, then Θ is computable.

- Proof idea: if $\Theta \circ S^{*}=\Phi \circ \Theta$ and $G(A)=\Theta^{A}(0)$ then $\Theta^{A}(n)=G\left(\Phi^{n} A\right)$.
- "Ergodic" interpretation

Another key idea

- A function $F: 2^{\omega} \rightarrow 2^{\omega}$ is E_{0}-invariant if $A={ }^{*} B \Longrightarrow F(A)=^{*} F(B)$.

Another key idea

- A function $F: 2^{\omega} \rightarrow 2^{\omega}$ is E_{0}-invariant if $A={ }^{*} B \Longrightarrow F(A)={ }^{*} F(B)$.
- Define uniform E_{0}-invariance as well.

Another key idea

- A function $F: 2^{\omega} \rightarrow 2^{\omega}$ is E_{0}-invariant if $A={ }^{*} B \Longrightarrow F(A)={ }^{*} F(B)$.
- Define uniform E_{0}-invariance as well.
- Need this to extend claims using Baire Category from $[\sigma]$ to 2^{ω}.

New claims

Let $\sigma \searrow X$ be X with the first few bits replaced by σ.

New claims

Let $\sigma \searrow X$ be X with the first few bits replaced by σ. The proof in 2019/2024 can be generalized from uniformly E_{0}-invariant functions to sea-reducible functions.

Definition

$F: 2^{\omega} \rightarrow 2^{\omega}$ is sea-reducible if for each σ there is an e such that for all X,

$$
F(X)=[e]^{F(\sigma \searrow X) \oplus X}
$$

Here [e] is the eth truth-table functional. "Sea-reducible" calls to mind both the south-east arrow (\searrow) and a ship at sea that floats from one $[\sigma]$ to the next.

The sea-reducible functions include the tt-uniform automorphisms, i.e., those induced by functions $F: 2^{\omega} \rightarrow 2^{\omega}$ such that

$$
F\left([a]^{X}\right)=[f(a)]^{F(X)}
$$

for some computable f.
Proof.
Indeed, given a string τ let $\left[a_{\tau}\right]^{X}=\tau \searrow X$. Now, given σ and X, let $\tau=X| | \sigma \mid$. So $\left[a_{\tau}\right]^{\sigma} \searrow X=X$, and

$$
F(X)=F\left(\left[a_{\tau}\right]^{\sigma \searrow x}\right)=\left[f\left(a_{\tau}\right)\right]^{F(\sigma \searrow x)}
$$

Then we can let $[e]^{Y \oplus X}=\left[f\left(a_{\tau}\right)\right]^{Y}$.

Figure: The truth-table degrees.

Scott domain

Consists of strings $2^{<\omega}$ and reals 2^{ω}.

Scott domain

Consists of strings $2^{<\omega}$ and reals 2^{ω}. These are ordered by extension: $\sigma \prec X, \sigma \preceq \tau$.

Scott domain

Consists of strings $2^{<\omega}$ and reals 2^{ω}. These are ordered by extension: $\sigma \prec X, \sigma \preceq \tau$. Automorphisms are given by bijections of ω together with bijections of 2 (one for each $n \in \omega$).

Scott domain

Consists of strings $2^{<\omega}$ and reals 2^{ω}. These are ordered by extension: $\sigma \prec X, \sigma \preceq \tau$. Automorphisms are given by bijections of ω together with bijections of 2 (one for each $n \in \omega$).

Example

Complementation is given by the identity function on ω and the nontrivial bijection of 2 at each n.

Example

Complementation is

- a nontrivial automorphism of the m-degrees,

Example

Complementation is

- a nontrivial automorphism of the m-degrees,
- a nontrivial automorphism of the p-degrees,

Example

Complementation is

- a nontrivial automorphism of the m-degrees,
- a nontrivial automorphism of the p-degrees,
- tt-uniform,

Example

Complementation is

- a nontrivial automorphism of the m-degrees,
- a nontrivial automorphism of the p-degrees,
- tt-uniform,
- an automorphism of the Scott domain,

Example

Complementation is

- a nontrivial automorphism of the m-degrees,
- a nontrivial automorphism of the p-degrees,
- tt-uniform,
- an automorphism of the Scott domain,
- an isomorphism of the d - and c-degrees.

Uniformly E_{0}-invariant implies sea-invariant

Proof.

Suppose F is uniformly E_{0}-invariant. Let σ be given and $a=|\sigma|$. By uniform invariance we have a b. The action of F on $n<b$ for all X is given by a finite database which is incorporated into [e]. For $n \geq b$, for all X, $F(X)(n)=F(\sigma \searrow X)(n)$ so we let

$$
[e]^{Y \oplus X}(n)= \begin{cases}Y(n) & n \geq b \\ F(X)(n) & n<b\end{cases}
$$

In fact this is a bit stronger in that only a fixed finite amount of X needs to be queried.

Example

A function that is sea-reducible but not E_{0}-invariant. Consider

$$
F(X)(n)= \begin{cases}X(0), & n=0 \\ X(n)+X(0)+Z(n), & n>0\end{cases}
$$

for a fixed real Z. Here $F(X)$ and $F(\sigma \searrow X)$ differ on almost all inputs if $X(0) \neq \sigma(0)$, but we can use

$$
[e]^{Y \oplus X}(n)=\left\{\begin{array}{lll}
\begin{cases}Y(n)+(\sigma(0)+X(0)), & n \geq|\sigma|, \\
F(X)(n), & n<|\sigma|>0 \\
Y(n) & \end{cases} & |\sigma|=0
\end{array}\right.
$$

(For any F, if $\sigma=\emptyset$ we can just take $[e]^{Y \oplus X}=Y$.)

Computability theory in Lean

- A library with Turing machines, tape heads etc. exists

Computability theory in Lean

- A library with Turing machines, tape heads etc. exists
- "By Church's thesis" - too tedious

Computability theory in Lean

- A library with Turing machines, tape heads etc. exists
- "By Church's thesis" - too tedious
- A positive notion of computability - [Decidable] - allows to prove computability but not to prove noncomputability.

Computability theory in Lean

- A library with Turing machines, tape heads etc. exists
- "By Church's thesis" - too tedious
- A positive notion of computability - [Decidable] - allows to prove computability but not to prove noncomputability.
- by decide and \#eval extends proving computability to actually computing

Forcing in Cantor space in Lean

Forcing in Cantor space in Lean

- In computability theory papers a condition is often $\sigma \in 2^{<\omega}$ (domain $|\sigma|$)

Forcing in Cantor space in Lean

- In computability theory papers a condition is often $\sigma \in 2^{<\omega}$ (domain $|\sigma|$)
- In Lean a condition is a function $U: \mathbb{N} \rightarrow \mathcal{P}(2)$ where $U(n)=2$ for all but finitely many n. This makes conditions infinite objects.

Forcing in Cantor space in Lean

- In computability theory papers a condition is often $\sigma \in 2^{<\omega}$ (domain $|\sigma|$)
- In Lean a condition is a function $U: \mathbb{N} \rightarrow \mathcal{P}(2)$ where $U(n)=2$ for all but finitely many n. This makes conditions infinite objects.

A compromise:

Forcing in Cantor space in Lean

- In computability theory papers a condition is often $\sigma \in 2^{<\omega}$ (domain $|\sigma|$)
- In Lean a condition is a function $U: \mathbb{N} \rightarrow \mathcal{P}(2)$ where $U(n)=2$ for all but finitely many n. This makes conditions infinite objects.

A compromise:

```
def condition {a : Type} := \Sigma I : Finset N, I }->\mathrm{ Set a
```


Sample theorem

```
theorem bounded_use_principles {\alpha : Type} [TopologicalSpace \alpha] [DiscreteTopology \alpha]
[CompactSpace (N ->\alpha)] (F : (N ->\alpha) >(N ->\alpha)) (hF : Continuous F) (n:N):
\exists (t : Finset { \tau : condition // \forall Y Y Y Y : (N A \alpha), \tau\leqslant Y ( 
    (Set.univ : Set (N }->\alpha)\mathrm{ )
    \subsetequ\sigma\int,{X:(N->\alpha) | \sigma\leqslant X}
```


DE GRUYTER

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY
A COMPUTABLE MEASURE OF IRREGULARITY

DE GRUYTER

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

- The automatic complexity $A(x)$ of $x \in\{0,1\}^{*}$ is the minimum number of states of a DFA M such that $L(M) \cap\{0,1\}^{|x|}=\{x\}$. (Shallit, Wang 2001)

DE GRUYTER

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

- The automatic complexity $A(x)$ of $x \in\{0,1\}^{*}$ is the minimum number of states of a DFA M such that $L(M) \cap\{0,1\}^{|x|}=\{x\}$. (Shallit, Wang 2001)
- I worked on the nondeterministic version $A_{N}(x)$ since 2009 culminating in a book (2024).

DE GRUYTER

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

- The automatic complexity $A(x)$ of $x \in\{0,1\}^{*}$ is the minimum number of states of a DFA M such that $L(M) \cap\{0,1\}^{|x|}=\{x\}$. (Shallit, Wang 2001)
- I worked on the nondeterministic version $A_{N}(x)$ since 2009 culminating in a book (2024).
- The probabilistic version $A_{P}(x)$ uses probabilistic DFAs. (Gill, 2024)

Formalizing Gill's paper in Lean

One step of computation is matrix multiplication:

```
def step {n q:N} (w : Fin n }->\mathrm{ Fin 2)
    (A : Fin 2 }->\mathrm{ Fin q }->\mathrm{ Fin q }->\mathbb{Q}\mathrm{ ) (i : Fin n)
        (M : Fin q}->\mathrm{ Fin q }->\mathbb{Q}\mathrm{ ) :
    (Fin q }->\mathrm{ Fin q }->\mathbb{Q}\mathrm{ ) :=
    Matrix.mul M (A (w i))
```


Formalizing Gill's paper in Lean

Lean's Fin.foldr allows us to consider sequences of multiplications corresponding to a word:

Formalizing Gill's paper in Lean

Lean's Fin.foldr allows us to consider sequences of multiplications corresponding to a word:

```
def fold_step {n q:N N (w : Fin n }->\mathrm{ Fin 2) (A : Fin 2 }
        Fin q}->\mathrm{ Fin q }->\mathbb{Q}):\mathrm{ Fin q }->\mathrm{ Fin q }->\mathbb{Q
    := Fin.foldr n (step w A) (fun i j \mapsto ite (i=j) 1 0)
def acceptance_probability {n q:N } (w : Fin n }->\mathrm{ Fin 2)
    (A : Fin 2 }->\mathrm{ Fin q }->\mathrm{ Fin q }->\mathbb{Q}\mathrm{ ) (q0 q1 : Fin q) : QQ :
        = by
    let Q := Matrix.mul (fold_step w A) (fun i : Fin q \mapsto
        fun j: Fin 1 \mapsto ite (i=q0) 1 0)
    let R := Matrix.mul (fun i : Fin 1 \mapsto fun j : Fin q \mapsto
```



```
    exact R 0 0
```


Formalizing Gill's paper in Lean

Lean's Fin.foldr allows us to consider sequences of multiplications corresponding to a word:

```
def fold_step {n q:N } (w : Fin n }->\mathrm{ Fin 2) (A : Fin 2 }
        Fin q}->\mathrm{ Fin q }->\mathbb{Q}):\mathrm{ Fin q }->\mathrm{ Fin q }->\mathbb{Q
    := Fin.foldr n (step w A) (fun i j \mapsto ite (i=j) 1 0)
def acceptance_probability {n q:N } (w : Fin n }->\mathrm{ Fin 2)
    (A : Fin 2 }->\mathrm{ Fin q }->\mathrm{ Fin q }->\mathbb{Q}\mathrm{ ) (q0 q1 : Fin q) : QQ :
        = by
    let Q := Matrix.mul (fold_step w A) (fun i : Fin q \mapsto
        fun j: Fin 1 \mapsto ite (i=q0) 1 0)
    let R := Matrix.mul (fun i : Fin 1 \mapsto fun j : Fin q \mapsto
```



```
    exact R 0 0
```

We can now both prove things and use Lean as a calculator.

