
Formal marginalia in computability theory

Bjørn Kjos-Hanssen
—

ASL Special Session on Computability Theory

May 15, 2024, 3-3:20pm
ASL Annual Meeting, Iowa State University

Abstract

Formal marginalia are formal proofs of small parts of a
mathematical theorem or publication.

Research in computability
theory makes extensive use of Church’s thesis, making full
formalization laborious. I present some examples of formal
marginalia in Lean for two recent papers:

I my paper A tractable case of the Turing automorphism
problem, 2024

I Kenneth Gill, Probabilistic automatic complexity of finite
strings, 2024

Abstract

Formal marginalia are formal proofs of small parts of a
mathematical theorem or publication.Research in computability
theory makes extensive use of Church’s thesis, making full
formalization laborious.

I present some examples of formal
marginalia in Lean for two recent papers:

I my paper A tractable case of the Turing automorphism
problem, 2024

I Kenneth Gill, Probabilistic automatic complexity of finite
strings, 2024

Abstract

Formal marginalia are formal proofs of small parts of a
mathematical theorem or publication.Research in computability
theory makes extensive use of Church’s thesis, making full
formalization laborious. I present some examples of formal
marginalia in Lean for two recent papers:

I my paper A tractable case of the Turing automorphism
problem, 2024

I Kenneth Gill, Probabilistic automatic complexity of finite
strings, 2024

Turing automorphism problem

I Does a nontrivial automorphism of DT exist? (How about
Dtt?)

I Does a “simple” nontrivial automorphism exist such as
A 7→ A?

Turing automorphism problem

I Does a nontrivial automorphism of DT exist? (How about
Dtt?)

I Does a “simple” nontrivial automorphism exist such as
A 7→ A?

My claims

Announced Published Result

2014 2018 no bijection of ω induces a
nontrivial automorphism of DT

2019 2024 no bi-uniformly E0-invariant
Cantor homeomorphism induces a
nontrivial automorphism of DT

1

1It now seems that the claim should be Dtt not DT .

Key lemma for 2019/2024 result

Lemma
If Θ : 2ω → 2ω is a homeomorphism and S∗A(n) = A(n + 1), and
Θ ◦ S∗ ◦Θ−1 is computable, then Θ is computable.

I Proof idea: if Θ ◦ S∗ = Φ ◦Θ and G (A) = ΘA(0) then
ΘA(n) = G (ΦnA).

I “Ergodic” interpretation

Key lemma for 2019/2024 result

Lemma
If Θ : 2ω → 2ω is a homeomorphism and S∗A(n) = A(n + 1), and
Θ ◦ S∗ ◦Θ−1 is computable, then Θ is computable.

I Proof idea: if Θ ◦ S∗ = Φ ◦Θ and G (A) = ΘA(0) then
ΘA(n) = G (ΦnA).

I “Ergodic” interpretation

Key lemma for 2019/2024 result

Lemma
If Θ : 2ω → 2ω is a homeomorphism and S∗A(n) = A(n + 1), and
Θ ◦ S∗ ◦Θ−1 is computable, then Θ is computable.

I Proof idea: if Θ ◦ S∗ = Φ ◦Θ and G (A) = ΘA(0) then
ΘA(n) = G (ΦnA).

I “Ergodic” interpretation

Key lemma for 2019/2024 result

Lemma
If Θ : 2ω → 2ω is a homeomorphism and S∗A(n) = A(n + 1), and
Θ ◦ S∗ ◦Θ−1 is computable, then Θ is computable.

I Proof idea: if Θ ◦ S∗ = Φ ◦Θ and G (A) = ΘA(0) then
ΘA(n) = G (ΦnA).

I “Ergodic” interpretation

Another key idea

I A function F : 2ω → 2ω is E0-invariant if
A =∗ B =⇒ F (A) =∗ F (B).

I Define uniform E0-invariance as well.

I Need this to extend claims using Baire Category from [σ] to
2ω.

Another key idea

I A function F : 2ω → 2ω is E0-invariant if
A =∗ B =⇒ F (A) =∗ F (B).

I Define uniform E0-invariance as well.

I Need this to extend claims using Baire Category from [σ] to
2ω.

Another key idea

I A function F : 2ω → 2ω is E0-invariant if
A =∗ B =⇒ F (A) =∗ F (B).

I Define uniform E0-invariance as well.

I Need this to extend claims using Baire Category from [σ] to
2ω.

New claims

Let σ ↘ X be X with the first few bits replaced by σ.

The proof in 2019/2024 can be generalized from uniformly
E0-invariant functions to sea-reducible functions.

Definition
F : 2ω → 2ω is sea-reducible if for each σ there is an e such that
for all X ,

F (X) = [e]F (σ↘X)⊕X .

Here [e] is the eth truth-table functional. “Sea-reducible” calls to mind both the south-east arrow (↘) and a ship

at sea that floats from one [σ] to the next.

New claims

Let σ ↘ X be X with the first few bits replaced by σ.
The proof in 2019/2024 can be generalized from uniformly
E0-invariant functions to sea-reducible functions.

Definition
F : 2ω → 2ω is sea-reducible if for each σ there is an e such that
for all X ,

F (X) = [e]F (σ↘X)⊕X .

Here [e] is the eth truth-table functional. “Sea-reducible” calls to mind both the south-east arrow (↘) and a ship

at sea that floats from one [σ] to the next.

The sea-reducible functions include the tt-uniform automorphisms,
i.e., those induced by functions F : 2ω → 2ω such that

F ([a]X) = [f (a)]F (X)

for some computable f .

Proof.
Indeed, given a string τ let [aτ]X = τ ↘ X . Now, given σ and X , let τ = X � |σ|. So [aτ]σ↘X = X , and

F (X) = F ([aτ]σ↘X) = [f (aτ)]F (σ↘X)

Then we can let [e]Y⊕X = [f (aτ)]Y .

No nontrivial
automorphism of the
truth-table degrees is
induced by an
automorphism of the
Scott domain 2≤ω.

O

0(ω)

0′′

0′

0

Figure: The truth-table
degrees.

Scott domain

Consists of strings 2<ω and reals 2ω.

These are ordered by
extension: σ ≺ X , σ � τ . Automorphisms are given by bijections
of ω together with bijections of 2 (one for each n ∈ ω).

Example

Complementation is given by the identity function on ω and the
nontrivial bijection of 2 at each n.

Scott domain

Consists of strings 2<ω and reals 2ω. These are ordered by
extension: σ ≺ X , σ � τ .

Automorphisms are given by bijections
of ω together with bijections of 2 (one for each n ∈ ω).

Example

Complementation is given by the identity function on ω and the
nontrivial bijection of 2 at each n.

Scott domain

Consists of strings 2<ω and reals 2ω. These are ordered by
extension: σ ≺ X , σ � τ . Automorphisms are given by bijections
of ω together with bijections of 2 (one for each n ∈ ω).

Example

Complementation is given by the identity function on ω and the
nontrivial bijection of 2 at each n.

Scott domain

Consists of strings 2<ω and reals 2ω. These are ordered by
extension: σ ≺ X , σ � τ . Automorphisms are given by bijections
of ω together with bijections of 2 (one for each n ∈ ω).

Example

Complementation is given by the identity function on ω and the
nontrivial bijection of 2 at each n.

K ⊕ K

K

<<

←→π K

bb

Example

Complementation is

I a nontrivial automorphism of the m-degrees,

I a nontrivial automorphism of the p-degrees,

I tt-uniform,

I an automorphism of the Scott domain,

I an isomorphism of the d- and c-degrees.

K ⊕ K

K

<<

←→π K

bb

Example

Complementation is

I a nontrivial automorphism of the m-degrees,

I a nontrivial automorphism of the p-degrees,

I tt-uniform,

I an automorphism of the Scott domain,

I an isomorphism of the d- and c-degrees.

K ⊕ K

K

<<

←→π K

bb

Example

Complementation is

I a nontrivial automorphism of the m-degrees,

I a nontrivial automorphism of the p-degrees,

I tt-uniform,

I an automorphism of the Scott domain,

I an isomorphism of the d- and c-degrees.

K ⊕ K

K

<<

←→π K

bb

Example

Complementation is

I a nontrivial automorphism of the m-degrees,

I a nontrivial automorphism of the p-degrees,

I tt-uniform,

I an automorphism of the Scott domain,

I an isomorphism of the d- and c-degrees.

K ⊕ K

K

<<

←→π K

bb

Example

Complementation is

I a nontrivial automorphism of the m-degrees,

I a nontrivial automorphism of the p-degrees,

I tt-uniform,

I an automorphism of the Scott domain,

I an isomorphism of the d- and c-degrees.

Uniformly E0-invariant implies sea-invariant

Proof.
Suppose F is uniformly E0-invariant. Let σ be given and a = |σ|. By uniform invariance we have a b. The action
of F on n < b for all X is given by a finite database which is incorporated into [e]. For n ≥ b, for all X ,
F (X)(n) = F (σ ↘ X)(n) so we let

[e]Y⊕X (n) =

{
Y (n) n ≥ b,

F (X)(n) n < b.

In fact this is a bit stronger in that only a fixed finite amount of X
needs to be queried.

Example
A function that is sea-reducible but not E0-invariant. Consider

F (X)(n) =

{
X (0), n = 0

X (n) + X (0) + Z(n), n > 0

for a fixed real Z . Here F (X) and F (σ ↘ X) differ on almost all inputs if X (0) 6= σ(0), but we can use

[e]Y⊕X (n) =

{
Y (n) + (σ(0) + X (0)), n ≥ |σ|,
F (X)(n), n < |σ|.

|σ| > 0

Y (n) |σ| = 0

(For any F , if σ = ∅ we can just take [e]Y⊕X = Y .)

Computability theory in Lean

I A library with Turing machines, tape heads etc. exists

I “By Church’s thesis” — too tedious

I A positive notion of computability — [Decidable] — allows
to prove computability but not to prove noncomputability.

I by decide and #eval extends proving computability to
actually computing

Computability theory in Lean

I A library with Turing machines, tape heads etc. exists

I “By Church’s thesis” — too tedious

I A positive notion of computability — [Decidable] — allows
to prove computability but not to prove noncomputability.

I by decide and #eval extends proving computability to
actually computing

Computability theory in Lean

I A library with Turing machines, tape heads etc. exists

I “By Church’s thesis” — too tedious

I A positive notion of computability — [Decidable] — allows
to prove computability but not to prove noncomputability.

I by decide and #eval extends proving computability to
actually computing

Computability theory in Lean

I A library with Turing machines, tape heads etc. exists

I “By Church’s thesis” — too tedious

I A positive notion of computability — [Decidable] — allows
to prove computability but not to prove noncomputability.

I by decide and #eval extends proving computability to
actually computing

Forcing in Cantor space in Lean

I In computability theory papers a condition is often σ ∈ 2<ω

(domain |σ|)
I In Lean a condition is a function U : N→ P(2) where

U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

A compromise:

def condition {a : Type} := Σ I : Finset N, I → Set a

Forcing in Cantor space in Lean

I In computability theory papers a condition is often σ ∈ 2<ω

(domain |σ|)

I In Lean a condition is a function U : N→ P(2) where
U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

A compromise:

def condition {a : Type} := Σ I : Finset N, I → Set a

Forcing in Cantor space in Lean

I In computability theory papers a condition is often σ ∈ 2<ω

(domain |σ|)
I In Lean a condition is a function U : N→ P(2) where

U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

A compromise:

def condition {a : Type} := Σ I : Finset N, I → Set a

Forcing in Cantor space in Lean

I In computability theory papers a condition is often σ ∈ 2<ω

(domain |σ|)
I In Lean a condition is a function U : N→ P(2) where

U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

A compromise:

def condition {a : Type} := Σ I : Finset N, I → Set a

Forcing in Cantor space in Lean

I In computability theory papers a condition is often σ ∈ 2<ω

(domain |σ|)
I In Lean a condition is a function U : N→ P(2) where

U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

A compromise:

def condition {a : Type} := Σ I : Finset N, I → Set a

Sample theorem

I The automatic complexity A(x) of x ∈ {0, 1}∗ is the minimum
number of states of a DFA M such that
L(M) ∩ {0, 1}|x | = {x}. (Shallit, Wang 2001)

I I worked on the nondeterministic version AN(x) since 2009
culminating in a book (2024).

I The probabilistic version AP(x) uses probabilistic DFAs. (Gill,
2024)

I The automatic complexity A(x) of x ∈ {0, 1}∗ is the minimum
number of states of a DFA M such that
L(M) ∩ {0, 1}|x | = {x}. (Shallit, Wang 2001)

I I worked on the nondeterministic version AN(x) since 2009
culminating in a book (2024).

I The probabilistic version AP(x) uses probabilistic DFAs. (Gill,
2024)

I The automatic complexity A(x) of x ∈ {0, 1}∗ is the minimum
number of states of a DFA M such that
L(M) ∩ {0, 1}|x | = {x}. (Shallit, Wang 2001)

I I worked on the nondeterministic version AN(x) since 2009
culminating in a book (2024).

I The probabilistic version AP(x) uses probabilistic DFAs. (Gill,
2024)

I The automatic complexity A(x) of x ∈ {0, 1}∗ is the minimum
number of states of a DFA M such that
L(M) ∩ {0, 1}|x | = {x}. (Shallit, Wang 2001)

I I worked on the nondeterministic version AN(x) since 2009
culminating in a book (2024).

I The probabilistic version AP(x) uses probabilistic DFAs. (Gill,
2024)

Formalizing Gill’s paper in Lean

One step of computation is matrix multiplication:

def step {n q:N} (w : Fin n → Fin 2)
(A : Fin 2 → Fin q → Fin q → Q) (i : Fin n)

(M : Fin q → Fin q → Q) :
(Fin q → Fin q → Q) :=

Matrix.mul M (A (w i))

Formalizing Gill’s paper in Lean

Lean’s Fin.foldr allows us to consider sequences of
multiplications corresponding to a word:

def fold_step {n q:N} (w : Fin n → Fin 2) (A : Fin 2 →
Fin q → Fin q → Q) : Fin q → Fin q → Q

:= Fin.foldr n (step w A) (fun i j 7→ ite (i=j) 1 0)

def acceptance_probability {n q:N} (w : Fin n → Fin 2)
(A : Fin 2 → Fin q → Fin q → Q) (q0 q1 : Fin q) : Q :
= by

let Q := Matrix.mul (fold_step w A) (fun i : Fin q 7→
fun j : Fin 1 7→ ite (i=q0) 1 0)

let R := Matrix.mul (fun i : Fin 1 7→ fun j : Fin q 7→
ite (j=q1) 1 0) Q

exact R 0 0

We can now both prove things and use Lean as a calculator.

Formalizing Gill’s paper in Lean

Lean’s Fin.foldr allows us to consider sequences of
multiplications corresponding to a word:

def fold_step {n q:N} (w : Fin n → Fin 2) (A : Fin 2 →
Fin q → Fin q → Q) : Fin q → Fin q → Q

:= Fin.foldr n (step w A) (fun i j 7→ ite (i=j) 1 0)

def acceptance_probability {n q:N} (w : Fin n → Fin 2)
(A : Fin 2 → Fin q → Fin q → Q) (q0 q1 : Fin q) : Q :
= by

let Q := Matrix.mul (fold_step w A) (fun i : Fin q 7→
fun j : Fin 1 7→ ite (i=q0) 1 0)

let R := Matrix.mul (fun i : Fin 1 7→ fun j : Fin q 7→
ite (j=q1) 1 0) Q

exact R 0 0

We can now both prove things and use Lean as a calculator.

Formalizing Gill’s paper in Lean

Lean’s Fin.foldr allows us to consider sequences of
multiplications corresponding to a word:

def fold_step {n q:N} (w : Fin n → Fin 2) (A : Fin 2 →
Fin q → Fin q → Q) : Fin q → Fin q → Q

:= Fin.foldr n (step w A) (fun i j 7→ ite (i=j) 1 0)

def acceptance_probability {n q:N} (w : Fin n → Fin 2)
(A : Fin 2 → Fin q → Fin q → Q) (q0 q1 : Fin q) : Q :
= by

let Q := Matrix.mul (fold_step w A) (fun i : Fin q 7→
fun j : Fin 1 7→ ite (i=q0) 1 0)

let R := Matrix.mul (fun i : Fin 1 7→ fun j : Fin q 7→
ite (j=q1) 1 0) Q

exact R 0 0

We can now both prove things and use Lean as a calculator.

	A tractable case
	Probabilistic automatic complexity of finite strings

