Formal marginalia in computability theory

Bjørn Kjos-Hanssen

ASL Special Session on Computability Theory

May 15, 2024, 3-3:20pm ASL Annual Meeting, Iowa State University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Abstract

Formal marginalia are formal proofs of small parts of a mathematical theorem or publication.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Abstract

Formal marginalia are formal proofs of small parts of a mathematical theorem or publication.Research in computability theory makes extensive use of Church's thesis, making full formalization laborious.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Abstract

Formal marginalia are formal proofs of small parts of a mathematical theorem or publication.Research in computability theory makes extensive use of Church's thesis, making full formalization laborious. I present some examples of formal marginalia in Lean for two recent papers:

- my paper A tractable case of the Turing automorphism problem, 2024
- Kenneth Gill, Probabilistic automatic complexity of finite strings, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Turing automorphism problem

Does a nontrivial automorphism of D_T exist? (How about D_{tt}?)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Turing automorphism problem

Does a nontrivial automorphism of D_T exist? (How about D_{tt}?)

• Does a "simple" nontrivial automorphism exist such as $A \mapsto \overline{A}$?

My claims

Announced	Published	Result
2014	2018	no bijection of ω induces a
		nontrivial automorphism of $D_{\mathcal{T}}$
2019	2024	no bi-uniformly <i>E</i> ₀ -invariant
		Cantor homeomorphism induces a
		nontrivial automorphism of $D_T{}^1$

¹It now seems that the claim should be D_{tt} not $D_T \square \triangleright \triangleleft \square \triangleright \triangleleft \blacksquare \flat \triangleleft \blacksquare \flat \square \blacksquare \neg \lhd \bigcirc$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Lemma

If $\Theta : 2^{\omega} \to 2^{\omega}$ is a homeomorphism and $S^*A(n) = A(n+1)$, and $\Theta \circ S^* \circ \Theta^{-1}$ is computable, then Θ is computable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lemma

If $\Theta : 2^{\omega} \to 2^{\omega}$ is a homeomorphism and $S^*A(n) = A(n+1)$, and $\Theta \circ S^* \circ \Theta^{-1}$ is computable, then Θ is computable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Proof idea: if $\Theta \circ S^* = \Phi \circ \Theta$ and $G(A) = \Theta^A(0)$ then $\Theta^A(n) = G(\Phi^n A)$.

Lemma

If $\Theta : 2^{\omega} \to 2^{\omega}$ is a homeomorphism and $S^*A(n) = A(n+1)$, and $\Theta \circ S^* \circ \Theta^{-1}$ is computable, then Θ is computable.

- ▶ Proof idea: if $\Theta \circ S^* = \Phi \circ \Theta$ and $G(A) = \Theta^A(0)$ then $\Theta^A(n) = G(\Phi^n A)$.
- "Ergodic" interpretation

Another key idea

▶ A function $F : 2^{\omega} \to 2^{\omega}$ is E_0 -invariant if $A =^* B \implies F(A) =^* F(B)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Another key idea

▶ A function $F : 2^{\omega} \to 2^{\omega}$ is E_0 -invariant if $A =^* B \implies F(A) =^* F(B)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▶ Define *uniform E*₀-invariance as well.

Another key idea

- ► A function $F : 2^{\omega} \to 2^{\omega}$ is E_0 -invariant if $A =^* B \implies F(A) =^* F(B)$.
- ▶ Define *uniform E*₀-invariance as well.
- Need this to extend claims using Baire Category from [σ] to 2^ω.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

New claims

Let $\sigma \searrow X$ be X with the first few bits replaced by σ .

New claims

Let $\sigma \searrow X$ be X with the first few bits replaced by σ . The proof in 2019/2024 can be generalized from uniformly E_0 -invariant functions to *sea-reducible* functions.

Definition

 ${\it F}: 2^\omega \to 2^\omega$ is sea-reducible if for each σ there is an e such that for all X,

$$F(X) = [e]^{F(\sigma \searrow X) \oplus X}.$$

Here [e] is the eth truth-table functional. "Sea-reducible" calls to mind both the south-east arrow (\searrow) and a ship at sea that floats from one [σ] to the next.

The sea-reducible functions include the *tt-uniform* automorphisms, i.e., those induced by functions $F: 2^{\omega} \rightarrow 2^{\omega}$ such that

$$F([a]^X) = [f(a)]^{F(X)}$$

for some computable f.

Proof. Indeed, given a string τ let $[a_{\tau}]^{X} = \tau \searrow X$. Now, given σ and X, let $\tau = X \upharpoonright |\sigma|$. So $[a_{\tau}]^{\sigma \searrow X} = X$, and

$$F(X) = F([a_{\tau}]^{\sigma \searrow X}) = [f(a_{\tau})]^{F(\sigma \searrow X)}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Then we can let $[e]^{Y \bigoplus X} = [f(a_{\tau})]^{Y}$.

No nontrivial automorphism of the truth-table degrees is induced by an automorphism of the Scott domain $2^{\leq \omega}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Figure: The truth-table degrees.

Consists of strings $2^{<\omega}$ and reals 2^{ω} .

Consists of strings $2^{<\omega}$ and reals 2^{ω} . These are ordered by extension: $\sigma \prec X$, $\sigma \preceq \tau$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Scott domain

Consists of strings $2^{<\omega}$ and reals 2^{ω} . These are ordered by extension: $\sigma \prec X$, $\sigma \preceq \tau$. Automorphisms are given by bijections of ω together with bijections of 2 (one for each $n \in \omega$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scott domain

Consists of strings $2^{<\omega}$ and reals 2^{ω} . These are ordered by extension: $\sigma \prec X$, $\sigma \preceq \tau$. Automorphisms are given by bijections of ω together with bijections of 2 (one for each $n \in \omega$).

Example

Complementation is given by the identity function on ω and the nontrivial bijection of 2 at each *n*.

Example

Complementation is

► a nontrivial automorphism of the *m*-degrees,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example

- ► a nontrivial automorphism of the *m*-degrees,
- ► a nontrivial automorphism of the *p*-degrees,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example

- ► a nontrivial automorphism of the *m*-degrees,
- ► a nontrivial automorphism of the *p*-degrees,
- tt-uniform,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

- ► a nontrivial automorphism of the *m*-degrees,
- a nontrivial automorphism of the *p*-degrees,
- tt-uniform,
- an automorphism of the Scott domain,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

- ► a nontrivial automorphism of the *m*-degrees,
- ▶ a nontrivial automorphism of the *p*-degrees,
- tt-uniform,
- an automorphism of the Scott domain,
- ▶ an isomorphism of the *d* and *c*-degrees.

Uniformly E_0 -invariant implies sea-invariant

Proof.

Suppose F is uniformly E_0 -invariant. Let σ be given and $a = |\sigma|$. By uniform invariance we have a b. The action of F on n < b for all X is given by a finite database which is incorporated into [e]. For $n \ge b$, for all X, $F(X)(n) = F(\sigma \searrow X)(n)$ so we let

$$[e]^{Y \bigoplus X}(n) = \begin{cases} Y(n) & n \ge b, \\ F(X)(n) & n < b. \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

In fact this is a bit stronger in that only a fixed finite amount of X needs to be queried.

Example A function that is sea-reducible but not E_0 -invariant. Consider

$$F(X)(n) = \begin{cases} X(0), & n = 0\\ X(n) + X(0) + Z(n), & n > 0 \end{cases}$$

for a fixed real Z. Here F(X) and $F(\sigma \searrow X)$ differ on almost all inputs if $X(0) \neq \sigma(0)$, but we can use

$$[e]^{Y \bigoplus X}(n) = \begin{cases} \begin{cases} Y(n) + (\sigma(0) + X(0)), & n \ge |\sigma|, \\ F(X)(n), & n < |\sigma|. \end{cases} \\ Y(n) & |\sigma| = 0 \end{cases}$$

(For any F, if $\sigma = \emptyset$ we can just take $[e]^{Y \oplus X} = Y$.)

A library with Turing machines, tape heads etc. exists

- A library with Turing machines, tape heads etc. exists
- "By Church's thesis" too tedious

- A library with Turing machines, tape heads etc. exists
- "By Church's thesis" too tedious
- A positive notion of computability [Decidable] allows to prove computability but not to prove noncomputability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A library with Turing machines, tape heads etc. exists
- "By Church's thesis" too tedious
- A positive notion of computability [Decidable] allows to prove computability but not to prove noncomputability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

by decide and #eval extends proving computability to actually computing

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

▶ In computability theory papers a condition is often $\sigma \in 2^{<\omega}$ (domain $|\sigma|$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- In computability theory papers a condition is often σ ∈ 2^{<ω} (domain |σ|)
- In Lean a condition is a function U : N → P(2) where U(n) = 2 for all but finitely many n. This makes conditions infinite objects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- In computability theory papers a condition is often σ ∈ 2^{<ω} (domain |σ|)
- In Lean a condition is a function U : N → P(2) where U(n) = 2 for all but finitely many n. This makes conditions infinite objects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A compromise:

- In computability theory papers a condition is often σ ∈ 2^{<ω} (domain |σ|)
- In Lean a condition is a function U : N → P(2) where U(n) = 2 for all but finitely many n. This makes conditions infinite objects.

A compromise:

def condition {a : Type} := Σ I : Finset \mathbb{N} , I \rightarrow Set a

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sample theorem

```
 \begin{array}{l} \mbox{theorem bounded_use_principle} & \{\alpha : Type\} \mbox{[TopologicalSpace $\alpha$] [DiscreteTopology $\alpha$]} \\ \mbox{[CompactSpace $(N \to \alpha)$] (F : $(N \to \alpha) \to (N \to \alpha)$) (hF : Continuous $F$) (n:N):} \\ \mbox{] (t : Finset } \{\tau : continuous $(N \to \alpha)$) (T \in Y_1 \to \tau \leqslant Y_2 \to F Y_1 n = F Y_2 n\}), \\ \mbox{[Set.univ : Set $(N \to \alpha)$]} \\ \mbox{] $\subseteq \upsilon \in t, $\{X : (N \to \alpha) \mid \sigma \leqslant X$} \\ \end{array}
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

The automatic complexity A(x) of x ∈ {0,1}* is the minimum number of states of a DFA M such that L(M) ∩ {0,1}^{|x|} = {x}. (Shallit, Wang 2001)

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

The automatic complexity A(x) of x ∈ {0,1}* is the minimum number of states of a DFA M such that L(M) ∩ {0,1}^{|x|} = {x}. (Shallit, Wang 2001)

▶ I worked on the nondeterministic version $A_N(x)$ since 2009 culminating in a book (2024).

Bjørn Kjos-Hanssen AUTOMATIC COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

- The automatic complexity A(x) of x ∈ {0,1}* is the minimum number of states of a DFA M such that L(M) ∩ {0,1}^{|x|} = {x}. (Shallit, Wang 2001)
- ▶ I worked on the nondeterministic version $A_N(x)$ since 2009 culminating in a book (2024).

The probabilistic version A_P(x) uses probabilistic DFAs. (Gill, 2024)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

One step of computation is matrix multiplication:

```
\begin{array}{l} \texttt{def step } \{n \ q: \mathbb{N}\} \ (\texttt{w} : \ \texttt{Fin} \ n \rightarrow \ \texttt{Fin} \ 2) \\ (\texttt{A} : \ \texttt{Fin} \ 2 \rightarrow \ \texttt{Fin} \ q \rightarrow \ \texttt{Fin} \ q \rightarrow \ \mathbb{Q}) \ (\texttt{i} : \ \texttt{Fin} \ n) \\ (\texttt{M} : \ \texttt{Fin} \ q \rightarrow \ \texttt{Fin} \ q \rightarrow \ \mathbb{Q}) \ : \\ (\texttt{Fin} \ q \rightarrow \ \texttt{Fin} \ q \rightarrow \ \mathbb{Q}) \ : \\ \texttt{Matrix.mul} \ \texttt{M} \ (\texttt{A} \ (\texttt{w} \ \texttt{i})) \end{array}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lean's Fin.foldr allows us to consider sequences of multiplications corresponding to a word:

Lean's Fin.foldr allows us to consider sequences of multiplications corresponding to a word:

```
\begin{array}{l} \mbox{def fold_step } \{n \ q:\mathbb{N}\} \ (w \ : \ Fin \ n \ \rightarrow \ Fin \ 2) \ (A \ : \ Fin \ 2 \ \rightarrow \ Fin \ q \ \rightarrow \ \mathbb{Q}) \ : \ Fin \ q \ \rightarrow \ \mathbb{Q} \ := \ Fin \ fold \ n \ (step \ w \ A) \ (fun \ i \ j \ \mapsto \ ite \ (i=j) \ 1 \ 0) \\ \mbox{def acceptance_probability} \ \{n \ q:\mathbb{N}\} \ (w \ : \ Fin \ n \ \rightarrow \ Fin \ 2) \ (A \ : \ Fin \ 2 \ \rightarrow \ Fin \ q \ \rightarrow \ \mathbb{Q}) \ (q_0 \ q_1 \ : \ Fin \ q) \ : \ \mathbb{Q} \ : \ = \ by \\ \mbox{let } Q \ := \ Matrix.mul \ (fold_step \ w \ A) \ (fun \ i \ : \ Fin \ q \ \mapsto \ fun \ j \ : \ Fin \ q \ \mapsto \ fun \ j \ : \ Fin \ 1 \ \mapsto \ te \ (i=q_0) \ 1 \ 0) \\ \mbox{let } R \ := \ Matrix.mul \ (fun \ i \ : \ Fin \ 1 \ \mapsto \ fun \ j \ : \ Fin \ q \ \mapsto \ ite \ (j=q_1) \ 1 \ 0) \ \mathbb{Q} \\ \ exact \ R \ 0 \ 0 \end{array}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lean's Fin.foldr allows us to consider sequences of multiplications corresponding to a word:

```
\begin{array}{l} \mbox{def fold_step } \{n \ q:\mathbb{N}\} \ (\texttt{w} : \ Fin \ n \ \rightarrow \ Fin \ 2) \ (\texttt{A} : \ Fin \ 2 \ \rightarrow \\ Fin \ q \ \rightarrow \ Fin \ q \ \rightarrow \ \mathbb{Q}) \ : \ Fin \ q \ \rightarrow \ Fin \ q \ \rightarrow \ \mathbb{Q} \\ := \ Fin.foldr \ n \ (step \ \texttt{w} \ \texttt{A}) \ (fun \ i \ j \ \mapsto \ ite \ (i=j) \ 1 \ 0) \\ \mbox{def acceptance_probability} \ \{n \ q:\mathbb{N}\} \ (\texttt{w} : \ Fin \ n \ \rightarrow \ Fin \ 2) \\ (\texttt{A} : \ Fin \ 2 \ \rightarrow \ Fin \ q \ \rightarrow \ Fin \ q \ \rightarrow \ \mathbb{Q}) \ (q_0 \ q_1 \ : \ Fin \ q) \ : \ \mathbb{Q} \ : \\ = \ by \\ \mbox{let $\mathbb{Q}$} \ : \ Fin \ 1 \ \mapsto \ Fin \ q \ \rightarrow \ \mathbb{Q}) \ (fun \ i \ : \ Fin \ q) \ : \ \mathbb{Q} \ : \\ \ fun \ j \ : \ Fin \ 1 \ \mapsto \ ite \ (i=q_0) \ 1 \ 0) \\ \mbox{let $\mathbb{R}$} \ : \ \ Matrix.mul \ (fold\_step \ \texttt{w} \ \texttt{A}) \ (fun \ i \ : \ \ Fin \ q \ \mapsto \\ ite \ (j=q_1) \ 1 \ 0) \ \mathbb{Q} \\ \ exact \ \ \ \ 0 \ 0 \end{array}
```

We can now both prove things and use Lean as a calculator.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ふして 山田 ふぼやえばや 山下