Formal marginalia in computability theory

Bjgrn Kjos-Hanssen

ASL Special Session on Computability Theory

May 15, 2024, 3-3:20pm
ASL Annual Meeting, lowa State University

Abstract

Formal marginalia are formal proofs of small parts of a
mathematical theorem or publication.

Abstract

Formal marginalia are formal proofs of small parts of a
mathematical theorem or publication.Research in computability
theory makes extensive use of Church's thesis, making full
formalization laborious.

Abstract

Formal marginalia are formal proofs of small parts of a
mathematical theorem or publication.Research in computability
theory makes extensive use of Church's thesis, making full
formalization laborious. | present some examples of formal
marginalia in Lean for two recent papers:
» my paper A tractable case of the Turing automorphism
problem, 2024
» Kenneth Gill, Probabilistic automatic complexity of finite
strings, 2024

Turing automorphism problem

» Does a nontrivial automorphism of D exist? (How about
Dtt?)

Turing automorphism problem

» Does a nontrivial automorphism of D exist? (How about
D7)

> Does a “simple” nontrivial automorphism exist such as
A A?

My claims

Announced Published Result

2014 2018 no bijection of w induces a
nontrivial automorphism of Dt
2019 2024 no bi-uniformly Ep-invariant

Cantor homeomorphism induces a
nontrivial automorphism of D71

It now seems that the claim should be Dy not Dr.

Key lemma for 2019/2024 result

Key lemma for 2019/2024 result

Lemma
If© :2¥ — 2¥ js a homeomorphism and S*A(n) = A(n+ 1), and
© o0 S* 0@~ js computable, then © is computable.

Key lemma for 2019/2024 result

Lemma
If©:2¥ — 2¥ js a homeomorphism and S*A(n) = A(n+ 1), and
© o0 S* 0@~ js computable, then © is computable.

» Proof idea: if © 0 S* = ® 0 © and G(A) = ©4(0) then
©A(n) = G($"A).

Key lemma for 2019/2024 result

Lemma
If©:2¥ — 2¥ js a homeomorphism and S*A(n) = A(n+ 1), and
© o0 S* 0@~ js computable, then © is computable.

» Proof idea: if © 0 S* = ® 0 © and G(A) = ©4(0) then
©A(n) = G($"A).
> “Ergodic” interpretation

Another key idea

» A function F : 2% — 2% is Eg-invariant if
A=*B = F(A) =* F(B).

Another key idea

» A function F : 2% — 2% is Eg-invariant if
A=*B = F(A) =* F(B).

» Define uniform Ep-invariance as well.

Another key idea

» A function F : 2% — 2% is Eg-invariant if
A=*B = F(A) =* F(B).
» Define uniform Ep-invariance as well.

» Need this to extend claims using Baire Category from [o] to
2v,

New claims

Let o \(X be X with the first few bits replaced by o.

New claims

Let o \(X be X with the first few bits replaced by o.
The proof in 2019/2024 can be generalized from uniformly
Eo-invariant functions to sea-reducible functions.

Definition
F : 2% — 2% s sea-reducible if for each o there is an e such that

for all X,
F(X) _ [e]F(a\X)GBX.

Here [e] is the eth truth-table functional. “Sea-reducible” calls to mind both the south-east arrow () and a ship

at sea that floats from one [o] to the next.

The sea-reducible functions include the tt-uniform automorphisms,
i.e., those induced by functions F : 2* — 2% such that

F(a) = [F(@) ™)

for some computable f.

Proof.

Indeed, given a string 7 let [aT]X =7 Ny X. Now, given o and X, let 7 = X | |o|. So [a.r]o\‘x = X, and
F(X) = F([ar]7) = [F(ar)] 7>

Then we can let [e]Y9X = [f(a,)]Y. O

No nontrivial
automorphism of the
truth-table degrees is
induced by an
automorphism of the
Scott domain 2S¢,

0//

Figure: The truth-table
degrees.

Scott domain

Consists of strings 2<% and reals 2.

Scott domain

Consists of strings 2<% and reals 2. These are ordered by
extension: 0 < X, o0 < T.

Scott domain

Consists of strings 2<% and reals 2. These are ordered by
extension: o < X, o <X 7. Automorphisms are given by bijections
of w together with bijections of 2 (one for each n € w).

Scott domain

Consists of strings 2<% and reals 2. These are ordered by
extension: o < X, o <X 7. Automorphisms are given by bijections
of w together with bijections of 2 (one for each n € w).

Example

Complementation is given by the identity function on w and the
nontrivial bijection of 2 at each n.

KoK

N

K — K

Example
Complementation is

» a nontrivial automorphism of the m-degrees,

KoK

N

K — K

Example
Complementation is
» a nontrivial automorphism of the m-degrees,

» a nontrivial automorphism of the p-degrees,

KoK

N

K — K

Example

Complementation is
» a nontrivial automorphism of the m-degrees,
» a nontrivial automorphism of the p-degrees,

» tt-uniform,

KoK

N

K —r K

Example

Complementation is
» a nontrivial automorphism of the m-degrees,
» a nontrivial automorphism of the p-degrees,
» tt-uniform,

» an automorphism of the Scott domain,

KoK

N

K —r K
Example
Complementation is
» a nontrivial automorphism of the m-degrees,
a nontrivial automorphism of the p-degrees,

>

» tt-uniform,
» an automorphism of the Scott domain,
>

an isomorphism of the d- and c-degrees.

Uniformly Egp-invariant implies sea-invariant

Proof.

Suppose F is uniformly Ep-invariant. Let o be given and a = |o|. By uniform invariance we have a b. The action
of Fon n < b for all X is given by a finite database which is incorporated into [e]. For n > b, for all X,
F(X)(n) = F(o ¢ X)(n) so we let

(6] ©X (n) = {Y(n) n> b,
Fi n .

O

In fact this is a bit stronger in that only a fixed finite amount of X
needs to be queried.

Example
A function that is sea-reducible but not Eg-invariant. consider

_) X(0), n=20
FEO(m) = {x(n) +X(0)+ Z(n), n>0

for a fixed real Z. Here F(X) and F(o \ X) differ on almost all inputs if X(0) # o(0), but we can use

F(X)(n),

Y(0) + (0(0) 4 X(0)), 0> |ol,
[eJY@Xm){{ n<lol. 17170
Y(n) lo| =0

(For any F, if o = 0 we can just take [e]YGBX =Y.)

Computability theory in Lean

» A library with Turing machines, tape heads etc. exists

Computability theory in Lean

» A library with Turing machines, tape heads etc. exists
» “By Church’s thesis” — too tedious

Computability theory in Lean

» A library with Turing machines, tape heads etc. exists
» “By Church’s thesis” — too tedious

» A positive notion of computability — [Decidable] — allows
to prove computability but not to prove noncomputability.

Computability theory in Lean

» A library with Turing machines, tape heads etc. exists

» “By Church’s thesis” — too tedious

» A positive notion of computability — [Decidable] — allows
to prove computability but not to prove noncomputability.

> by decide and #eval extends proving computability to
actually computing

Forcing in Cantor space in Lean

Forcing in Cantor space in Lean

» In computability theory papers a condition is often o € 2<%
(domain |o|)

Forcing in Cantor space in Lean

» In computability theory papers a condition is often o € 2<%
(domain |o|)

» In Lean a condition is a function U : N — P(2) where
U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

Forcing in Cantor space in Lean

» In computability theory papers a condition is often o € 2<%
(domain |o|)

» In Lean a condition is a function U : N — P(2) where
U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.

A compromise:

Forcing in Cantor space in Lean

» In computability theory papers a condition is often o € 2<%
(domain |o|)
» In Lean a condition is a function U : N — P(2) where
U(n) = 2 for all but finitely many n. This makes conditions
infinite objects.
A compromise:

def condition {a : Type} := ¥ I : Finset N, I — Set a

Sample theorem

bounded_use_principles {o : } [TopologicalSpace @] [DiscreteTopology al
[CompactSpace (W - a)]l (F : (M » a) - (W - a)) (hF : Continuous F) (n:N):
3 (t : Finset { t : condition // ¥ Y1 Y2 : (N-a), t €Y1 > 1 <€Y2~+FYsn=FYzn}),

(Set.univ : Set (N - a))}
cuo€Et, {X: (N-a)

DE GRUYTER

Bjorn Kjos-Hanssen

AUTOMATIC
COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

DE GRUYTER

Bjorn Kjos-Hanssen

AUTOMATIC
COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

» The automatic complexity A(x) of x € {0,1}* is the minimum
number of states of a DFA M such that
L(M)n{0,1}¥ = {x}. (Shallit, Wang 2001)

DE GRUYTER

Bjorn Kjos-Hanssen

AUTOMATIC
COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

» The automatic complexity A(x) of x € {0,1}* is the minimum
number of states of a DFA M such that
L(M)n{0,1}¥ = {x}. (Shallit, Wang 2001)

» | worked on the nondeterministic version Ay(x) since 2009
culminating in a book (2024).

DE GRUYTER

Bjorn Kjos-Hanssen

AUTOMATIC
COMPLEXITY

A COMPUTABLE MEASURE OF IRREGULARITY

» The automatic complexity A(x) of x € {0,1}* is the minimum
number of states of a DFA M such that
L(M)n{0,1}¥ = {x}. (Shallit, Wang 2001)

» | worked on the nondeterministic version Ay(x) since 2009
culminating in a book (2024).

» The probabilistic version Ap(x) uses probabilistic DFAs. (Gill,
2024)

Formalizing Gill's paper in Lean

One step of computation is matrix multiplication:

def step {n q:N} (w : Fin n — Fin 2)
(A : Fin 2 = Fin g —» Finq — Q) (i : Fin n)
(M : Fin g — Fin q — Q)
(Fin q — Fin q — Q) :=
Matrix.mul M (A (w 1))

Formalizing Gill's paper in Lean

Lean's Fin.foldr allows us to consider sequences of
multiplications corresponding to a word:

Formalizing Gill's paper in Lean

Lean's Fin.foldr allows us to consider sequences of
multiplications corresponding to a word:

def fold_step {n q:N} (w : Fin n — Fin 2) (A : Fin 2 —
Finq -+ Finq - Q) : Fin q —» Finq —» Q
:= Fin.foldr n (step w A) (fun i j — ite (i=j) 1 0)

def acceptance_probability {n q:N} (w : Fin n — Fin 2)

(A : Fin2 - Finq — Finqg — Q) (g a1 : Finq) : Q :
= by

let Q := Matrix.mul (fold_step w A) (fun i : Fin q —
fun j : Fin 1 — ite (i=qp) 1 0)

let R := Matrix.mul (fun i : Fin 1 — fun j : Fin q —
ite (j=q1) 1 0) Q

exact R 0 0

Formalizing Gill's paper in Lean

Lean's Fin.foldr allows us to consider sequences of
multiplications corresponding to a word:

def fold_step {n q:N} (w : Fin n — Fin 2) (A : Fin 2 —
Finq -+ Finq - Q) : Fin q —» Finq —» Q
:= Fin.foldr n (step w A) (fun i j — ite (i=j) 1 0)

def acceptance_probability {n q:N} (w : Fin n — Fin 2)

(A : Fin2 - Finq — Finqg — Q) (g a1 : Finq) : Q :
= by

let Q := Matrix.mul (fold_step w A) (fun i : Fin q —
fun j : Fin 1 — ite (i=qp) 1 0)

let R := Matrix.mul (fun i : Fin 1 — fun j : Fin q —
ite (j=q1) 1 0) Q

exact R 0 0

We can now both prove things and use Lean as a calculator.

o

	A tractable case
	Probabilistic automatic complexity of finite strings

