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>>> Abstract

Li, Chen, Li, Ma, and Vitányi (2004) introduced a similarity
metric based on Kolmogorov complexity. It followed work by
Shannon in the 1950s on a metric based on entropy. We define
two computable similarity metrics, analogous to the Jaccard
distance and Normalized Information Distance, based on
conditional automatic complexity and show that they satisfy
all axioms of metric spaces.
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>>> A good notion of complexity C(x), x = 01101001

* C should be computable (in single-exponential time?)
* C should be well defined
(not just ''up to a constant'')

* The problem: C(x) ≤ k should be NP-complete: a general
search problem.

* C should be defined in a not too convoluted way and
accessible to early-stage researchers

* C should be robust: several reasonable definitions turn
out to be equivalent.

This matches the intuition that the true complexity of a
pattern should be hard but not impossible to discern.
Automatic complexity A(x) has these properties (except that
robustness is a bit of an open question, and NP-completeness
is only known for partitions in place of words).
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>>> DFA

A deterministic finite automaton (DFA) is a 5-tuple
M = (Q,Σ, δ, q0, F ) where
* Q is a finite set of states;
* Σ is a finite alphabet;
* δ : Q× Σ → Q is a transition function;
* q0 ∈ Q is an initial state;
* F ⊆ Q is a set of final states.
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>>> NFA

A nondeterministic finite automaton (DFA) is a 5-tuple
M = (Q,Σ, δ, q0, F ) where
* Q is a finite set of states;
* Σ is a finite alphabet;
* δ : Q× Σ → P(Q) is a transition function;
* q0 ∈ Q is an initial state;
* F ⊆ Q is a set of final states.
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>>> Language recognized by DFA

Let ε be the empty word. We define δ∗ : Q× Σ∗ → Q by

δ∗(q, ε) = q

δ∗(q, xa) = δ(δ(q, x), a)

for x ∈ Σ∗ and a ∈ Σ.

L(M) = {x : δ∗(q0, x) ∈ F}

is the language recognized by M.
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>>> Language recognized by NFA

Let ε be the empty word. We define δ∗ : Q× Σ∗ → P(Q) by

δ∗(q, ε) = {q}
δ∗(q, xa) =

∪
r∈δ(q,x)

δ(r, a)

for x ∈ Σ∗ and a ∈ Σ.

L(M) = {x : δ∗(q0, x) ∈ F}

is the language recognized by M.
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>>> Shallit and Wang 2001

Definition
Let Σ = {0, 1} and
x ∈ Σ∗. The
automatic
complexity A(x) of
x is the least |Q|
over all DFAs M
with
L(M) ∩ Σ|x| = {x}.

Example
A(0n) = 2 for all
n ≥ 1.
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Figure: Jeff Shallit
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>>> State sequences

Let M be an NFA. An accepting state sequence for
x = x0 . . . xn−1 in M, where xi ∈ Σ for 0 ≤ i < n, is a sequence
(q0, . . . , qn) where qi ∈ Q and

qi+1 ∈ δ∗(qi, xi)

for each 0 ≤ i ≤ n, and qn ∈ F.
Let P (x,M) be the set of accepting state sequences for x in
M.
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>>> Nondeterministic automatic complexity AN

We say that an NFA M path-uniquely accepts x if
* |P (x,M)| = 1;
* |P (x,M)| = 0 for all y ̸= x, |y| = |x|.

AN (x) = ANu(x) is the minimum of |Q| over all NFAs M which
path-uniquely accept x.
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>>> Robustness question

Definition
ANe(x) is the minimum of |Q| over all NFAs M with
L(M) ∩ Σ|x| = {x}.

* ANe is a direct analogue of A;
* ANu is easier to compute in practice.

The main open robustness question for AN:

Question

ANe = ANu?
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>>> Comparative disagreement

If X is a set and (Y,≤) a linear order then any f : X → Y
induces a total preorder on X by a ≤f b ⇐⇒ f(a) ≤ f(b).
f, g induce distinct orders if ≤f ̸=≤g.
f, g induce incompatible orders if there exists a, b with
f(a) < f(b), g(b) < g(a).
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>>> Edge (transition) complexity

An edge of M is a pair (q1, q2) with q2 ∈ δ(q1, a) for some a ∈ Σ
(the label of the edge).
The set of edges of M is E(M).
EN (x) is the minimal |E(M)| over all NFAs M path-uniquely
accepting x.
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>>> EN and AN induce incompatible orders

start // 76540123'&%$ !"#q0 // 76540123q1
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x = 00011101

76540123q2 //

``AAAAAAAA 76540123q3
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x y
AN 4 5
EN 6 5

start // 76540123q0
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// 76540123q1 // 76540123q2 // 76540123q3 // 76540123'&%$ !"#q4

y = 00001000

[2. Definitions]$ _ [17/52]



back to Outline

[2. Definitions]$ _ [18/52]



>>> Pre-history

* Turing [1936]: Universal Turing machine
* McCulloch and Pitts [1943]: Idea of finite automata
* Rabin and Scott [1959]: Finite automata introduced
* Kolmogorov [1965] Kolmogorov complexity of a string

x = 0111001, say, = the length of the shortest program
printing x

* Kolmogorov [1974]: Kolmogorov's structure functions
* Diwan [1986]: Complexity based on context-free grammars,
word chains

* Yu et al. [1994]: State complexity questions for finite
automata
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>>> The 2000s: the beginning

* Shallit and Wang [2001], 2nd Workshop on Descriptional
Complexity of Automata, Grammars and Related Structures
(London, Ontario, July 27 -– 29, 2000): definitions and
the first results.

* I independently defined automatic complexity in a
Discrete mathematics (Math 301) class in 2009
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>>> The 2010s

* Hyde and Kjos-Hanssen [2014, 2015]: Nondeterministic
version and first results thereon: cubefree words are
maximally complex

* Kjos-Hanssen [2014, 2015]: automatic structure functions,
thanks to a suggestion of Vereshchagin in Singapore 2014

* Kjos-Hanssen [2017a]: Quantum automatic complexity:
counting eigenstates vs. counting states

* Kjos-Hanssen [2017b, 2018]: Automatic complexity of
linear shift register sequences is n/2−O(log2 n)

* Kjos-Hanssen [2017c]: maximally complex words not a CFL.
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>>> The 2020s

* Kjos-Hanssen [2021a]: Infinite Fibonacci words have
intermediate complexity rate

* Jordon and Moser [2021]: normal sequences with
``non-maximal'' automatic complexity. Open problem
though: are there infinite words x with A(x ↾ n)/n → 1?

* Incompressibility theorem (answering question from 2001;
Kjos-Hanssen [2021b])
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>>> Complexity of complexity

* Problem: given x and k, determine whether A(x) ≤ k.
* Problem: given x and k, determine whether AN (x) ≤ k.

These problems are in NP. It is not known whether they are
NP-complete.
What's known:
* Related problems are not in CFL or coCFL, and not in SAC0
(recognized by semi-unbounded fan-in constant depth
circuits) or coSAC0.

* A related problem of automatic complexity of equivalence
relations is NP-complete.
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>>> Automatic complexity rate

Deterministic:
A(x)

|x|
Nondeterministic:

AN (x)

|x|
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>>> Upper bounds

Theorem ([Shallit and Wang, 2001, Theorem 6])
The automatic complexity rate of almost all binary words is
upper bounded by by 3/4 + ϵ for each ϵ > 0.

Theorem ([Kjos-Hanssen, 2019, Theorem 26])
The automatic complexity rate of almost all b-ary words is
upper bounded by by 1

2 + 1
2b + ϵ for each ϵ > 0.

As b → ∞ the rate bound is 1/2 which is sharp.
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>>> Upper bounds

Words with fixed alphabet size cannot get too close to the
A(x) upper bound of |x|+ 1; there is a logarithmic gap:

Theorem ([Shallit and Wang, 2001, Theorem 5])
Let x be a k-ary word.
If n ≥ kt + t then A(x) ≤ n+ 2− t.
The proof involves looking for repeated subwords.

Theorem (K., in prep.)
A(x) ≤ |x|+ 3− 1

2

√
|x|.

The proof involves looking at runs from 0∗, 1∗, (01)∗, (10)∗.

Question
Is A(x) ≤ |x|/2 + o(|x|)?

[5. Bounds]$ _ [28/52]



>>> Upper bound of AN

Theorem (Hyde (2013), see [Hyde and Kjos-Hanssen, 2015,
Theorem 3])
Let x ∈ Σn. Then AN (x) ≤ n

2 + 1.
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q1start q2 . . . qm qm+1

x1 x2 xm−1 xm

xm+1

xm+2xm+3xn−1xn

Figure: An NFA uniquely accepting x = x1x2 . . . xn, n = 2m+ 1

[5. Bounds]$ _ [30/52]



>>> Shifted versions

q1start q2 q3 q4 q5 q6

q7

0 1 1 1 0

0

10100 1

q1 q2 q3 q4 q5 q6

q7start

0 1 1 1 0

0

10100 1

Figure: NFAs uniquely accepting x = 01110010101 0 and
y = 001110010101.
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>>> Deficiency

Definition
The AN-deficiency of x is ⌊n/2⌋+ 1−AN (x).
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Theorem (Shallit and Wang 2001)
If x ∈ Σn is square-free then A(x) ≥ n+1

2 .
Therefore square-free words have AN-deficiency 0. So Hyde's
theorem is sharp.
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>>> Lower bounds

Theorem ([Shallit and Wang, 2001, Theorem 8])
A(x) ≥ n/13 for almost all binary x.
They stated that Holger Petersen has informed them that the
result can be strengthened to A(x) ≥ n/7.

Theorem ([Kjos-Hanssen, 2021b, Theorem 18])
A(x) ≥ n/(2 + ϵ) for almost all x, for any ϵ > 0.
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Beros et al. [2019]: the digraphs representing the witnessing
automata are planar, in fact they are trees of cycles. The
cycles are added in Kleene--Brouwer order. Example:
05105160103:

q0start

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

0

0 0

0

0

1

0

0

0

0

1

1 1

1
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>>> Tracks

Definition (product of words)
Let Γ and ∆ be alphabets. Let n ∈ N, x ∈ Γn and y ∈ ∆n. When
no confusion with binomial coefficients is likely, we let(
a
b

)
= (a, b) ∈ Σ×∆. The product of x and y, x× y ∈ (Γ×∆)n, is

defined to be the word(
x0
y0

)(
x1
y1

)
. . .

(
xn−1

yn−1

)
,

which we may also denote as
(
x
y

)
.

Definition (projections of a word)
Let Γ and ∆ be alphabets. Let n ∈ N, x ∈ Γn and y ∈ ∆n. The
projections π1 and π2 are defined by π1(x× y) = x,
π2(x× y) = y.
The product x× y (Shallit [2023]) is also known as the track
x#y (Kjos-Hanssen [2024]).
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A rainbow word is defined inductively: the empty word is one,
and if x, y are rainbow words then so is xy provided x and y
have no common symbols.

Theorem
For all words x, y, we have max{AN (x), AN (y)} ≤ AN (x× y).
There exist words x, y with max{A−(x), A−(y)} ̸≤ A−(x× y).

Proof.
Let x be a word of some length n with A−(x) > n/2 + 1. An
example can be found among the maximum-length sequences for
linear feedback shift registers as observed in Kjos-Hanssen
[2018]. Let y be a rainbow word of the same length. Whenever
y is a rainbow word, so is x× y. Therefore
A−(x× y) ≤ n/2 + 1 < A−(x) by a general upper bound theorem
due to Hyde (COCOON 2014).
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Definition
Let Γ and ∆ be alphabets. Let n ∈ N and x ∈ Γn, y ∈ ∆n. The
conditional (nondeterministic) automatic complexity of x
given y, AN (x | y), is the minimum number of states of an NFA
over Γ×∆ such that Item i and Item ii hold.
(i) Let m be the number of accepting walks of length

n = |x| = |y| for which the word w read on the walk
satisfies π1(w) = y. Then m = 1.

(ii) M accepts y × x.

Note that M may accept many words of length n, but only one
of the form y × (?).
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>>> Example

Let y = (012345)k for some large k, and let x = (0123)l where
4l = 6k, so that |x| = |y|. We have AN (x× y) = lcm(4, 6) = 12, and
AN (y) = 6. The fact that AN (x | y) = 2 is witnessed by the NFA
in (1).
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Theorem
AN (x× y) ≤ AN (x | y) ·AN (y).
We show AN (x) ≤ AN (y × x) ≤ AN ((y × x)× y) ≤ AN (x | y) ·AN (y).
Actually AN (y × x) = AN ((y × x)× y) always holds since we can
use an invertible morphism (b, a) ↔ ((b, a), b). Construction for
the proof: Let NFAs

M1 = (Q1,Γ×∆, δ1, q0,1, F1), M2 = (Q2,Γ, δ2, q0,2, F2)

be given. The product is

M1 ×1 M2 = (Q1 ×Q2,∆, δ, (q0,1, q0,2), F1 × F2)

where (r, r′) ∈ δ((q, q′), a) if r ∈ δ1(q, (b, a)) and r′ ∈ δ2(q
′, b) for

some b.
(We can also form M1 ×2 M2 where (r, r′) ∈ δ((q, q′), (b, a)) if
r ∈ δ1(q, (b, a)) and r′ ∈ δ2(q

′, b).)
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The product M1 ×2 M2 can be viewed as the natural NFA for

φ((L(M1)× L(M2)) ∩ Σ∗)

where Σ is a ``diagonal'' subalphabet of Γ×∆, and φ is the
projection morphism (((b, a), c)) → (b, a). Then M1 ×1 M2 is
obtained by also applying the morphism (b, a) → a.
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>>> Metrics

Using the conditional automatic complexity we obtain metrics
where Vitányi et al. only obtained approximate metrics for
Kolmogorov complexity.

Definition
Let x, y be words of length n ∈ N. We define

Jmax(x, y) =
logmax{A(x | y), A(y | x)}

logmax{A(x), A(y)}
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