This semester, the Analysis Seminar will meet on Tuesdays 3:30 – 4:20 pm in Keller 402.

Title :

What are the possible shapes of polynomial Julia sets?

Abstract :

Ever since the digital revolution and the emergence of computers, mathematicians have been fascinated by fractals, those geometric figures showing self-similar patterns and irregular structures. A well-known family of fractals introduced by Gaston Julia and Pierre Fatou in the early 20th century are the so-called Julia sets, obtained from the iteration of a polynomial of one complex variable. It has been known for a long time how rich and diverse the geometry of these Julia sets are, from Cantor sets to smooth curves as well as highly irregular figures.

But what exactly are the possible shapes of polynomial Julia sets? This question, raised by Bill Thurston shortly before he passed away, has a rather surprising answer : they can have any shape, except some trivial topological obstructions. In this talk, I will present the ideas underlying the proof of this result, which gives an explicit construction. In particular, we will see how potential theory comes into play. I will also discuss some related computational aspects.

Speaker: Monique Chyba

Title: Is control theory loosing control?

Abstract: We live in an era of exciting scientific advances such as discovering new planets and black holes far away in the universe or gaining a better understanding of our own biological system. Unsurprisingly, mathematics plays a dominant role in almost all of them. Control theory models, analyzes and synthesizes the behavior of dynamical systems. Those systems are described by sets of ordinary differential equations that include an additional parameter referred to as the ‘control’. It can be viewed as the ship’s wheel of the system in analogy to the navigation of a boat. A vast area of work takes place in optimal control theory. Indeed, since by using different controls we can achieve the same goal, optimization with respect to a given cost such as energy or time becomes a primary interest. I will present three specific examples to illustrate the field of control theory and its current limitations that call for an innovative way of thinking.

Kiran Kedlaya (UCSD)

Speaker: Rufus Willett

Title: Positive curvature and index theory.

Abstract: Starting with two-dimensional surfaces, I’ll introduce positive (scalar) curvature. I’ll then discuss the relationship of this to index theory, a theory that counts the number of solutions to certain partial differential equations. Finally, I’ll mention the relevance of K-theory, a way of generalizing the notion of dimension of a vector space from fields to arbitrary rings.

View your event at https://www.google.com/calendar/event?action=VIEW&eid=N3NsdWpobDZwMnI2ZmJqbjliN2dyOGVpbm8gaGF3YWlpLmVkdV9hcGdwazdtbzE0ZDNpc3JxajA4Ym1rbmIyMEBn.

View your event at https://www.google.com/calendar/event?action=VIEW&eid=N3NsdWpobDZwMnI2ZmJqbjliN2dyOGVpbm8gaGF3YWlpLmVkdV9hcGdwazdtbzE0ZDNpc3JxajA4Ym1rbmIyMEBn.

Title : Conformal welding homeomorphisms.

Abstract : Conformal welding is a correspondence between circle homeomorphisms and curves in the plane. It has appeared over the years to be of considerable interest in several areas of mathematics and applications, such as Teichmüller Theory, Kleinian Groups, computer vision and pattern recognition, and so forth.

The uniqueness of conformal welding has been known for a long time to be closely related to the notion of conformal removability. In fact, many papers in the literature claim, using the same argument, that uniqueness is characterized precisely by the removability of the curve. In this talk, I will show that this argument is actually incorrect, so that the problem of characterizing uniqueness of conformal welding remains open.