Speaker: Victor Donnay, William Kenan, Jr Professor of Mathematics and Director, Environmental Studies program, Bryn Mawr College

Title: Connecting Math and Sustainability

Abstract: How can we better inspire our students to study and succeed in mathematics? Victor Donnay will discuss his experiences in using issues of civic engagement, particularly environmental sustainability, as a motivator. He will present a variety of ways to incorporate issues of sustainability into math and science classes ranging from easy to adapt extensions of standard homework problems to more elaborate service learning projects. He will share some of the educational resources that he helped collect as chair of the planning committee for Mathematics Awareness Month 2013- the Mathematics of Sustainability as well as his TED-Ed video on Tipping Points and Climate Change. He has used these approaches in a variety of courses including Calculus, Differential Equations, Mathematical Modeling and Senior Seminar.

Keller 303

Introduction for grad students and other beginners, as a prequel to Thursday’s talk.

Title: A curiosity of the trace operator II

Abstract: I’ll discuss the regularity of the trace operator on various smoothness spaces. In short, this is an operator which reduces (roughly) smoothness as measured in L_p by an order of 1/p. Its behavior on Sobolev spaces, especially on the Hilbert spaces W_2^s (i.e., where smoothness is measured in L_2), plays a critical role in approximation theory when boundaries are present, and in the stability, regularity and existence results for weak solutions for PDEs.

Previously I presented a somewhat negative results: that the trace operator from W_2^(1/2) to L_2 is not bounded (although it is bounded from W_2^{s+1/2} to W_2^s when s>0. In this talk, I’ll explain how a minor correction (a so-called “curiosity” according to Hans Triebel) works – namely, by reducing the domain to a certain Besov space and using results from the atomic decomposition of these spaces.

Speaker: André Nies (University of Auckland), Fellow of the Royal Society of New Zealand

Title: Structure within the class of $K$-trivial sets

Abstract: The $K$-trivial sets are antirandom in the sense that the initial segment complexity in terms of prefix-free Kolmogorov complexity $K$ grows as slowly as possible. Since 2002, many alternative characterisations of this class have been found: properties such as low for $K$, low for Martin-Löf (ML) randomness, and basis for ML randomness, which state in one way or the other that the set is close to computable.

Initially the class looked quite amorphous. More recently, internal structure has been found. Bienvenu et al. (JEMS 2016) showed that there is a “smart” $K$-trivial set, in the sense that any ML-random computing it must compute all $K$-trivials. Greenberg, Miller and Nies (submitted) showed that there is a dense hierarchy of subclasses. Even more recent results with Turetsky combine the two approaches using cost functions.

The talk gives an overview and ends with open questions (of which there remain many).

Location: Keller Hall 303

Hilbert’s third problem, scissors congruence, and the Dehn invariant

TITLE: Asymptotic Fixed Points, Part II

ABSTRACT: Continuing the earlier seminar, I will give nonstandard proofs for

one or more (depending on time) results like the

one below (which consolidates and generalizes a number of recent results in

the area).

Suppose

$(X,d)$ is a complete metric space,

$T:Xto X$ is continuous,

$phi, phi_n:[0,infty)to[0,infty)$, and

$phi_n$ converges to $phi$ uniformly on the range of $d$,

$phi$ is semicontinuous and satisfies $phi(s)~~0$,~~

$d(T^nx,T^ny)lephi_n(d(x,y))$ for all $x,yin X$ and $ninmathbb N$.

Moreover, suppose that for any $x,y$, $phi(t)lesssim t$ on infinite

elements of

$${^*d(T^nx,T^my) : m, n text{ hyperintegers}}.$$

Then $T$ has a unique fixed point $x_infty$, and for every $xin X, limlimits_{ntoinfty}T^n(x)=x_infty$. Moreover, this convergence is

uniform on bounded subsets of $X$.

Speaker: Joe Gerver (Rutgers)

Title: Non-collision singularities in the n-body problem: history and recent progress

Abstract: In the 1890′s, Poincare asked whether, in the n-body problem with point masses and Newtonian gravitation, it is possible to have a singularity without a collision. This might happen, for example, if one or more bodies were to oscillate wildly, like the function sin (1/t). We will go over the history of this problem for the past 120 years, including some recent developments.

Speaker: Michelle Manes (UH Mānoa)

Title: Curve-based cryptography, a tour of recent developments

Abstract: Elliptic curve cryptography (ECC) was first proposed in the mid 1980s, but it took 20 years for ECC algorithms to become widely used. Researchers are currently laying the mathematical foundations for cryptosystems based on genus 2 and more recently on genus 3 curves. If we’re successful, these systems may be widely used in another 10 years or so. Many of the breakthroughs in this area have come from research collaborations forged at the Women in Numbers and Sage Days for Women conferences.

In this talk, I’ll give a brief introduction to the idea of cryptosystems based on the “discrete log problem,” including ECC and higher genus curves. I’ll trace the story of the recent results, and I’ll provide some mathematical details for the most recent work on genus 3 curves.