When:

January 24, 2020 @ 3:30 pm – 4:30 pm

2020-01-24T15:30:00-10:00

2020-01-24T16:30:00-10:00

Where:

Keller 401

Speaker: Vasu Tewari (U. Penn)

Title: Divided symmetrization and Schubert polynomials

Abstract: Divided symmetrization is an algebraic operation that takes a multivariate polynomial as input and outputs a scalar, which in many cases is a combinatorially interesting quantity. In this talk, I will describe how divided symmetrization arises in different areas of mathematics, ranging from discrete geometry, where it is intimately tied to computing volumes of permutahedra, to algebraic geometry, where it makes an appearance in the cohomology class of a certain variety.

I will then focus on the divided symmetrization of Schubert polynomials. The emphasis throughout is on the combinatorics involved.