Module 3 - Linear versus Exponential

Department of Mathematics

益 University of Hawai'i at Mānoa

Math 100

Two Important Change Patterns

Reminder:

- Linear change occurs when a quantity changes by the same absolute amount in each unit of time.

Two Important Change Patterns

Reminder:

- Linear change occurs when a quantity changes by the same absolute amount in each unit of time.
- Exponential change occurs when a quantity change by the same relative amount in each unit of time.

Two Important Change Patterns

Reminder:

- Linear change occurs when a quantity changes by the same absolute amount in each unit of time.
- Exponential change occurs when a quantity change by the same relative amount in each unit of time.

Two Important Change Patterns

Reminder:

- Linear change occurs when a quantity changes by the same absolute amount in each unit of time.
- Exponential change occurs when a quantity change by the same relative amount in each unit of time.

Another way to say the same thing: for linear grow (decay), you add (subsctract) the same amount per unit of time, and for exponential growth(decay) you multiply(divide) by the same amount for each unit of time.

Examples of Linear Growth

Example 1:

A hurricane moves across the water at 15 mph . The distance traveled grows linearly: every hour, it adds 15 miles to the distance covered.

Examples of Linear Growth

Example 1:

A hurricane moves across the water at 15 mph . The distance traveled grows linearly: every hour, it adds 15 miles to the distance covered.

Example 2:

You save money by putting $\$ 10$ under your mattress each week. The amount of money you have grows linearly: each week you add $\$ 10$ to the amount of money you have.

Examples of Exponential Growth

Example 1:
A disease is spread from one individual to three other people every day. The amount of cases grows exponentially: every day, you multiply the amount by 3 .

Example 2:
A colony of bacteria doubles in size every hour.
This is exponential growth: every hour, you multiply the number of bacteria by two.

Linear or Exponential?

The price of a gallon of milk is increasing by 4 cents per week as a result of a shortage. If the price is $\$ 4.00$ per gallon today, what will it be in ten weeks?

Linear or Exponential?

The price of a gallon of milk is increasing by 4 cents per week as a result of a shortage. If the price is $\$ 4.00$ per gallon today, what will it be in ten weeks?
This is linear growth: the price increases by a certain amount (4 cents) every week independently of what it was the week prior.

Linear or Exponential?

The price of a gallon of milk is increasing by 4 cents per week as a result of a shortage. If the price is $\$ 4.00$ per gallon today, what will it be in ten weeks?
This is linear growth: the price increases by a certain amount (4 cents) every week independently of what it was the week prior.
During ten weeks the price will increase by
$4 \times 10=40$ cents,

Linear or Exponential?

The price of a gallon of milk is increasing by 4 cents per week as a result of a shortage. If the price is $\$ 4.00$ per gallon today, what will it be in ten weeks?
This is linear growth: the price increases by a certain amount (4 cents) every week independently of what it was the week prior.
During ten weeks the price will increase by
$4 \times 10=40$ cents,
and will become $4.00+40=\$ 4.40$

Linear or Exponential? Milk...

Here the pattern is: n weeks later the price (in cents) is

$$
400+4 \times n \quad \text { (cents). }
$$

Linear or Exponential? Milk...

Here the pattern is: n weeks later the price (in cents) is

$$
400+4 \times n \quad \text { (cents). }
$$

The general formula for linear growth is

$$
Q_{t}=Q_{0}+m t
$$

Where Q_{0} is the initial amount and, m is the rate of change, and t is the time that has gone by.

Linear or Exponential? Milk...

Here the pattern is: n weeks later the price (in cents) is

$$
400+4 \times n \quad \text { (cents). }
$$

The general formula for linear growth is

$$
Q_{t}=Q_{0}+m t
$$

Where Q_{0} is the initial amount and, m is the rate of change, and t is the time that has gone by.
This is the equation of a line, with slope m. Another way to commonly write this is

$$
y=b+m x
$$

Linear or Exponential?

The value of your car is decreasing by 10% per year. If the car is worth $\$ 12,000$ today, what will it be worth in two years?

Linear or Exponential?

The value of your car is decreasing by 10% per year. If the car is worth $\$ 12,000$ today, what will it be worth in two years?
This is exponential decay: the value decreases by a certain percentage (10%) every year.

Linear or Exponential?

The value of your car is decreasing by 10% per year. If the car is worth $\$ 12,000$ today, what will it be worth in two years?
This is exponential decay: the value decreases by a certain percentage (10%) every year.
One year from now the car is worth
$12000-12000 \times 0.1=12000 \times(1-0.1)=12000 \times 0.9=\$ 10,800$

Linear or Exponential?

The value of your car is decreasing by 10% per year. If the car is worth $\$ 12,000$ today, what will it be worth in two years?
This is exponential decay: the value decreases by a certain percentage (10%) every year.
One year from now the car is worth
$12000-12000 \times 0.1=12000 \times(1-0.1)=12000 \times 0.9=\$ 10,800$
Two years from now the car is worth
$10800-10800 \times 0.1=10800-1080=\$ 9,720$

Linear or Exponential? Car ... variation

One year from now the car is worth
$12000-12000 \times 0.1=12000 \times(1-0.1)=12000 \times 0.9=\$ 10800$

Linear or Exponential? Car ... variation

One year from now the car is worth
$12000-12000 \times 0.1=12000 \times(1-0.1)=12000 \times 0.9=\$ 10800$
Two years from now the car is worth

$$
12000 \times(1-0.1)) \times(1-0.1)=12000 \times(1-0.1)^{2}
$$

Linear or Exponential? Car ... variation

One year from now the car is worth
$12000-12000 \times 0.1=12000 \times(1-0.1)=12000 \times 0.9=\$ 10800$
Two years from now the car is worth

$$
12000 \times(1-0.1)) \times(1-0.1)=12000 \times(1-0.1)^{2}
$$

Three years from now the car is worth

$$
\left(12000 \times(1-0.1)^{2}\right) \times(1-0.1)=12000 \times(1-0.1)^{3}
$$

Linear or Exponential? Car ... variation

One year from now the car is worth
$12000-12000 \times 0.1=12000 \times(1-0.1)=12000 \times 0.9=\$ 10800$
Two years from now the car is worth

$$
12000 \times(1-0.1)) \times(1-0.1)=12000 \times(1-0.1)^{2}
$$

Three years from now the car is worth

$$
\left(12000 \times(1-0.1)^{2}\right) \times(1-0.1)=12000 \times(1-0.1)^{3}
$$

Now the pattern becomes clear: n years from now the car is worth

$$
12000 \times(1-0.1)^{n}=12000 \times 0.9^{n}
$$

For example, 20 years from now, the car is worth $12000 \times 0.9^{20} \approx \$ 1,459$

Exponential Decay

Notice that this formula for the worth after n years

$$
12000 \times(1-0.1)^{n}=12000 \times 0.9^{n}
$$

is the same as the first formula

$$
Q=Q_{0}(1+r)^{n}
$$

except here our $r=-0.1$ or -10% since we have exponential decay.

Exponential Models

The basic form for an exponential model is

$$
Q=Q_{0} \times(1+r)^{t}
$$

where:

Exponential Models

The basic form for an exponential model is

$$
Q=Q_{0} \times(1+r)^{t}
$$

where:

- Q is the quantity being discussed, and t is the time passed.

Exponential Models

The basic form for an exponential model is

$$
Q=Q_{0} \times(1+r)^{t}
$$

where:
Q is the quantity being discussed, and t is the time passed. Recall that these are called variables, with Q being the dependent variable, and t the independent variable.

Exponential Models

The basic form for an exponential model is

$$
Q=Q_{0} \times(1+r)^{t}
$$

where:

- Q is the quantity being discussed, and t is the time passed. Recall that these are called variables, with Q being the dependent variable, and t the independent variable.
- Q_{0} is the initial quantity, and r is the rate of increase / decrease. These are called constants: they are usually fixed as part of the problem.

Questions with Exponential Models

As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:

Questions with Exponential Models

As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:

1. You are given t and need to find Q.

Questions with Exponential Models

As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:

1. You are given t and need to find Q.
2. You are given t, and need to find the percentage change (or multiplier, or fraction...).

Questions with Exponential Models

 As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:1. You are given t and need to find Q.
2. You are given t, and need to find the percentage change (or multiplier, or fraction...).
3. You are given Q, and need to find t.

Questions with Exponential Models

 As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:1. You are given t and need to find Q.
2. You are given t, and need to find the percentage change (or multiplier, or fraction...).
3. You are given Q, and need to find t.
4. You are given a percentage change (or multiplier, or fraction...), and need to find t.

Questions with Exponential Models

As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:

1. You are given t and need to find Q.
2. You are given t, and need to find the percentage change (or multiplier, or fraction...).
3. You are given Q, and need to find t.
4. You are given a percentage change (or multiplier, or fraction...), and need to find t.

- Types 1 and 3 use the whole equation $Q=Q_{0} \times(1+r)^{t}$; types 2 and 4 really just use the 'multiplier' part $(1+r)^{t}$.

Questions with Exponential Models

As well as asking you to set up the model, there are (at least!) four types of problems you can be asked about an exponential model $Q=Q_{0} \times(1+r)^{t}$:

1. You are given t and need to find Q.
2. You are given t, and need to find the percentage change (or multiplier, or fraction...).
3. You are given Q, and need to find t.
4. You are given a percentage change (or multiplier, or fraction...), and need to find t.

- Types 1 and 3 use the whole equation $Q=Q_{0} \times(1+r)^{t}$; types 2 and 4 really just use the 'multiplier' part $(1+r)^{t}$.
- Types 3 and 4 (almost always) need you to use logs, but 1 and 2 are algebraically simpler and do not.

Doubling Time

The doubling time is a very important quantity associated to any exponential model.

- The time required for each doubling in exponential growth is called the doubling time, written $T_{\text {double }}$.

Doubling Time

The doubling time is a very important quantity associated to any exponential model.

- The time required for each doubling in exponential growth is called the doubling time, written $T_{\text {double }}$.
- Doubling time is an intuitive measure of how fast something is growing.

Doubling Time

The doubling time is a very important quantity associated to any exponential model.

- The time required for each doubling in exponential growth is called the doubling time, written $T_{\text {double }}$.
- Doubling time is an intuitive measure of how fast something is growing.
- It also gives a good way of predicting the quantity of something in the future.

COVID-19 Exponential Spread

An early estimate of doubling time for COVID-19 in a collection of countries was found to be 5 days. By what factor does it grow in 10 days? In 15 days?

1. If the disease starts in 1 person, it becomes 2 people after 5 days.

COVID-19 Exponential Spread

An early estimate of doubling time for COVID-19 in a collection of countries was found to be 5 days. By what factor does it grow in 10 days? In 15 days?

1. If the disease starts in 1 person, it becomes 2 people after 5 days. Then, it becomes 4 people after another 5 days.

COVID-19 Exponential Spread

An early estimate of doubling time for COVID-19 in a collection of countries was found to be 5 days. By what factor does it grow in 10 days? In 15 days?

1. If the disease starts in 1 person, it becomes 2 people after 5 days. Then, it becomes 4 people after another 5 days. Thus 1 person has turned into 4 people during 10 days, and the factor is 4.
2. Similarly, during 15 days $1 \rightarrow 2 \rightarrow 4 \rightarrow 8$, and the factor is 8 .

Doubling Time Formula

The previous example suggests that knowing the initial value of a quantity and its doubling time we might be able to write down a formula for the value of the quantity at any moment of time.

Doubling Time Formula

The previous example suggests that knowing the initial value of a quantity and its doubling time we might be able to write down a formula for the value of the quantity at any moment of time.

- Indeed, the formula is:
new value $=$ initial value $\times 2^{t / T_{\text {double }}}$

Doubling Time Formula

The previous example suggests that knowing the initial value of a quantity and its doubling time we might be able to write down a formula for the value of the quantity at any moment of time.

- Indeed, the formula is:
new value $=$ initial value $\times 2^{t / T_{\text {double }}}$
- For the COVID-19 example we have $T_{\text {double }}=5$, so we get:

Doubling Time Formula

The previous example suggests that knowing the initial value of a quantity and its doubling time we might be able to write down a formula for the value of the quantity at any moment of time.

- Indeed, the formula is:
new value $=$ initial value $\times 2^{t / T_{\text {double }}}$
- For the COVID-19 example we have $T_{\text {double }}=5$, so we get:
- after 5 days, the factor is $2^{5 / T_{\text {double }}}=2^{1}=2$

Doubling Time Formula

The previous example suggests that knowing the initial value of a quantity and its doubling time we might be able to write down a formula for the value of the quantity at any moment of time.

- Indeed, the formula is:
new value $=$ initial value $\times 2^{t / T_{\text {double }}}$
- For the COVID-19 example we have $T_{\text {double }}=5$, so we get:
- after 5 days, the factor is $2^{5 / T_{\text {double }}}=2^{1}=2$
- after 10 days, the factor is $2^{10 / T_{\text {double }}}=2^{2}=4$

Doubling Time Formula

The previous example suggests that knowing the initial value of a quantity and its doubling time we might be able to write down a formula for the value of the quantity at any moment of time.

- Indeed, the formula is:
new value $=$ initial value $\times 2^{t / T_{\text {double }}}$
- For the COVID-19 example we have $T_{\text {double }}=5$, so we get:
- after 5 days, the factor is $2^{5 / T_{\text {double }}}=2^{1}=2$
- after 10 days, the factor is $2^{10 / T_{\text {double }}}=2^{2}=4$
- after 15 days, the factor is $2^{15 / T_{\text {double }}}=2^{3}=8$

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.
Example: Suppose the number of employees at a company is growing at a rate of 25% a year. How many years will it take the company to double in size?

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.
Example: Suppose the number of employees at a company is growing at a rate of 25% a year. How many years will it take the company to double in size? Assume the company starts with 10 people.

- After 1 year: $10 \times 1.25=12.5 \approx 13$ people

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.
Example: Suppose the number of employees at a company is growing at a rate of 25% a year. How many years will it take the company to double in size? Assume the company starts with 10 people.

- After 1 year: $10 \times 1.25=12.5 \approx 13$ people
- After 2 years: $10 \times 1.25 \times 1.25=15.625 \approx 16$ people

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.
Example: Suppose the number of employees at a company is growing at a rate of 25% a year. How many years will it take the company to double in size? Assume the company starts with 10 people.

- After 1 year: $10 \times 1.25=12.5 \approx 13$ people
- After 2 years: $10 \times 1.25 \times 1.25=15.625 \approx 16$ people
- After 3 years: $10 \times 1.25 \times 1.25 \times 1.25=19.53 \approx 20$ people (so it has doubled after about 3 years).

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.
Example: Suppose the number of employees at a company is growing at a rate of 25% a year. How many years will it take the company to double in size? Assume the company starts with 10 people.

- After 1 year: $10 \times 1.25=12.5 \approx 13$ people
- After 2 years: $10 \times 1.25 \times 1.25=15.625 \approx 16$ people
- After 3 years: $10 \times 1.25 \times 1.25 \times 1.25=19.53 \approx 20$ people (so it has doubled after about 3 years).
- After 3 more years it should double again...

Doubling Time Example

All exponential growth has a doubling time, even if it is not obvious in the problem.
Example: Suppose the number of employees at a company is growing at a rate of 25% a year. How many years will it take the company to double in size? Assume the company starts with 10 people.

- After 1 year: $10 \times 1.25=12.5 \approx 13$ people
- After 2 years: $10 \times 1.25 \times 1.25=15.625 \approx 16$ people
- After 3 years: $10 \times 1.25 \times 1.25 \times 1.25=19.53 \approx 20$ people (so it has doubled after about 3 years).
- After 3 more years it should double again...
- After n years: $10 \times(1.25)^{n}$, so after 6 years we have $10 \times(1.25)^{6}=38.14$ which is about 38 people. The actual doubling time is a bit more that 3 years.

Finding The Doubling Time

In many cases, exponential growth is specified simply by giving a rate of growth in percentage points.

Suppose the initial value of our quantity is Q_{0}, and it grows by $\mathrm{P} \%$ each unit of time. Let $r=\frac{P}{100}$ be the fractional growth rate. Then we know that after time t the quantity will have the value

$$
Q_{t}=Q_{0} \times(1+r)^{t}
$$

We can find the doubling time from the above equation. But to better understand how we do it, let's review logarithms.

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b.

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b. For example,

$$
\log _{2}(32)=5, \quad \log _{2}(1 / 4)=-2, \quad \log _{2}(1)=0
$$

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b. For example,

$$
\log _{2}(32)=5, \quad \log _{2}(1 / 4)=-2, \quad \log _{2}(1)=0
$$

- $\log _{a} a^{b}=b$ and $a^{\log _{a} b}=b$

The properties below hold for any base, so for convenience we'll omit the base.

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b. For example,

$$
\log _{2}(32)=5, \quad \log _{2}(1 / 4)=-2, \quad \log _{2}(1)=0
$$

- $\log _{a} a^{b}=b$ and $a^{\log _{a} b}=b$

The properties below hold for any base, so for convenience we'll omit the base.

- $\log x y=\log x+\log y$.

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b. For example,

$$
\log _{2}(32)=5, \quad \log _{2}(1 / 4)=-2, \quad \log _{2}(1)=0
$$

- $\log _{a} a^{b}=b$ and $a^{\log _{a} b}=b$

The properties below hold for any base, so for convenience we'll omit the base.

- $\log x y=\log x+\log y$.
- $\log \frac{x}{y}=\log x-\log y$.

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b. For example,

$$
\log _{2}(32)=5, \quad \log _{2}(1 / 4)=-2, \quad \log _{2}(1)=0
$$

- $\log _{a} a^{b}=b$ and $a^{\log _{a} b}=b$

The properties below hold for any base, so for convenience we'll omit the base.

- $\log x y=\log x+\log y$.
- $\log \frac{x}{y}=\log x-\log y$.
- $\log x^{y}=y \log x$.

Properties of Logarithms

Idea: $\log _{a} b$ is the value such that when the base a is raised to the power equal to that value you get b. For example,

$$
\log _{2}(32)=5, \quad \log _{2}(1 / 4)=-2, \quad \log _{2}(1)=0
$$

- $\log _{a} a^{b}=b$ and $a^{\log _{a} b}=b$

The properties below hold for any base, so for convenience we'll omit the base.

- $\log x y=\log x+\log y$.
- $\log \frac{x}{y}=\log x-\log y$.
- $\log x^{y}=y \log x$.
- It may be useful to have a default base in mind. Say, you can interpret $\log x$ as $\log _{10} x$. Just make sure you're consistent. Most calculators (and google) use base 10 as default.

Back to Finding Doubling Time

 We know that after time t the quantity with initial value Q_{0} and a fractional growth rate r will have the value$$
Q_{t}=Q_{0} \times(1+r)^{t}
$$

If $t=T_{\text {double }}$, then we have:

$$
2 Q_{0}=Q_{0} \times(1+r)^{T_{\text {double }}}, \quad \text { so } 2=(1+r)^{T_{\text {double }}}
$$

Taking logarithm of both sides we get:

$$
\log 2=\log (1+r)^{T_{\text {double }}}=T_{\text {double }} \log (1+r)
$$

So, we find:

$$
T_{\text {double }}=\frac{\log 2}{\log (1+r)}
$$

Doubling Time For Company Again

Let's return to our company that is growing at a rate of 25% per year and use our doubling formula:

$$
T_{\text {double }}=\frac{\log 2}{\log (1+r)}
$$

with $r=.25$

Doubling Time For Company Again

Let's return to our company that is growing at a rate of 25% per year and use our doubling formula:

$$
T_{\text {double }}=\frac{\log 2}{\log (1+r)}
$$

with $r=.25$

$$
T_{\text {double }}=\frac{\log 2}{\log (1.25)} \approx 3.11
$$

Doubling Time For Company Again

Let's return to our company that is growing at a rate of 25% per year and use our doubling formula:

$$
T_{\text {double }}=\frac{\log 2}{\log (1+r)}
$$

with $r=.25$

$$
T_{\text {double }}=\frac{\log 2}{\log (1.25)} \approx 3.11
$$

Due to the properties of logarithms, it doesn't matter in the formula if you use $\log _{10}$ or \log with some other base. However, you must use the same base in the numerator and denominator.

Approximate The Doubling Time

We know the exact formula to find the doubling time:
$T_{\text {double }}=\frac{\log 2}{\log (1+r)}$, where r is the fractional growth rate.

- Sometimes, using logarithms in our computations can be a bit tedious. It turns out that if r is small (which often is the case), then $\log _{10}(1+r) \approx 0.434 r$.

Approximate The Doubling Time

We know the exact formula to find the doubling time:
$T_{\text {double }}=\frac{\log 2}{\log (1+r)}$, where r is the fractional growth rate.

- Sometimes, using logarithms in our computations can be a bit tedious. It turns out that if r is small (which often is the case), then $\log _{10}(1+r) \approx 0.434 r$.
- Using the base 10 the exact formula becomes:
$T_{\text {double }}=\frac{\log _{10} 2}{\log _{10}(1+r)}$

Approximate The Doubling Time

We know the exact formula to find the doubling time:
$T_{\text {double }}=\frac{\log 2}{\log (1+r)}$, where r is the fractional growth rate.

- Sometimes, using logarithms in our computations can be a bit tedious. It turns out that if r is small (which often is the case), then $\log _{10}(1+r) \approx 0.434 r$.
- Using the base 10 the exact formula becomes: $T_{\text {double }}=\frac{\log _{10} 2}{\log _{10}(1+r)}$
- Plugging in our approximation for $\log _{10}(1+r)$ we get:

$$
T_{\text {double }} \approx \frac{\log _{10} 2}{0.434 r} \approx \frac{0.7}{r}=\frac{0.7}{P / 100}=\frac{70}{P}
$$

where P is the growth rate in percents.

Oil Consumption Increase

Oil consumption is increasing at a rate of 2.2% per year. What is the approximate doubling time? By what factor will the oil consumption increase in a decade?

Oil Consumption Increase

Oil consumption is increasing at a rate of 2.2% per year. What is the approximate doubling time? By what factor will the oil consumption increase in a decade?

Solution. By the approximate doubling time formula with $\mathrm{P}=2.2 \%$,

$$
T_{\text {double }} \approx \frac{70}{P}=\frac{70}{2.2} \approx 32 \text { years }
$$

The factor is

$$
2^{t / T_{\text {double }}} \approx 2^{10 / 32} \approx 1.24
$$

Exponential Decay and Half-life

With exponential decay, the quantity decreases and after some time becomes a half of what it was initially. The time required for each halving is called the half-life.

- If $T_{\text {half }}$ denotes the half-life, then we can show that after time t, the exponentially decreasing quantity has the value:
new value $=$ initial value $\times\left(\frac{1}{2}\right)^{t / T_{\text {half }}}$

Notice that $\left(\frac{1}{2}\right)^{t / T_{\text {half }}}=2^{-t / T_{\text {half }}}$

Exponential Decay and Half-life

With exponential decay, the quantity decreases and after some time becomes a half of what it was initially. The time required for each halving is called the half-life.

- If $T_{\text {half }}$ denotes the half-life, then we can show that after time t, the exponentially decreasing quantity has the value:
new value $=$ initial value $\times\left(\frac{1}{2}\right)^{t / T_{\text {half }}}$
- Which is similar to

$$
\text { new value }=\text { initial value } \times 2^{t / T_{\text {double }}} .
$$

Notice that $\left(\frac{1}{2}\right)^{t / T_{\text {half }}}=2^{-t / T_{\text {half }}}$

Drug Half-life

The half-life of marijuana in the bloodstream is 13 days. What fraction of the original drug dose remains after 78 days? After 156 days?

Drug Half-life

The half-life of marijuana in the bloodstream is 13 days. What fraction of the original drug dose remains after 78 days? After 156 days?Solution 1.

- Half of the drug remains after 13 days; half of this half, which is a quarter, remains after 26 days, half of his quarter, which is $\frac{1}{8}$, remains after 39 days; another 39 hours will leave an eighth of this $\frac{1}{8}$. Continuing like this, we have $\frac{1}{64}$ after 78 days.
- Another 78 days will leave the bloodstream with $\frac{1}{64}$ of this $\frac{1}{64}$. Thus after 78 days there is $\frac{1}{64} \times \frac{1}{64}=\frac{1}{4096}$ of the initial quantity.

Drug Half-life

The half-life of marijuana in the bloodstream is 13 days. What fraction of the original drug dose remains after 78 days? After 156 days?

Drug Half-life

The half-life of marijuana in the bloodstream is 13 days. What fraction of the original drug dose remains after 78 days? After 156 days?Solution 2.

- We can use the formula with $T_{\text {half }}=13$:

$$
\text { new value }=\text { initial value } \times\left(\frac{1}{2}\right)^{t / T_{\text {half }}}
$$

- For $t=78$ hours, the factor is

$$
\left(\frac{1}{2}\right)^{t / T_{\text {half }}}=\left(\frac{1}{2}\right)^{78 / 13}=\left(\frac{1}{2}\right)^{6}=\frac{1}{64} .
$$

Drug Half-life

The half-life of marijuana in the bloodstream is 13 days. What fraction of the original drug dose remains after 78 days? After 156 days?Solution 2.

- We can use the formula with $T_{\text {half }}=13$:

$$
\text { new value }=\text { initial value } \times\left(\frac{1}{2}\right)^{t / T_{\text {half }}}
$$

- For $t=78$ hours, the factor is

$$
\left(\frac{1}{2}\right)^{t / T_{\text {half }}}=\left(\frac{1}{2}\right)^{78 / 13}=\left(\frac{1}{2}\right)^{6}=\frac{1}{64} .
$$

Drug Half-life

The half-life of marijuana in the bloodstream is 13 days. What fraction of the original drug dose remains after 78 days? After 156 days?Solution 2.

- We can use the formula with $T_{\text {half }}=13$:

$$
\text { new value }=\text { initial value } \times\left(\frac{1}{2}\right)^{t / T_{\text {half }}}
$$

- For $t=78$ hours, the factor is

$$
\left(\frac{1}{2}\right)^{t / T_{\text {half }}}=\left(\frac{1}{2}\right)^{78 / 13}=\left(\frac{1}{2}\right)^{6}=\frac{1}{64} .
$$

- For $t=156$ hours, the factor is

$$
\left(\frac{1}{2}\right)^{t / T_{\text {half }}}=\left(\frac{1}{2}\right)^{156 / 13}=\left(\frac{1}{2}\right)^{12}=\frac{1}{4096}
$$

Approximate half-life formula

- It is exactly the same as for the doubling time formula:

Approximate half-life formula

- It is exactly the same as for the doubling time formula:
- If P is the percentage decay rate, then

$$
T_{\text {half }} \approx \frac{70}{P}
$$

assuming that P is relatively small.

Approximate half-life formula

- It is exactly the same as for the doubling time formula:
- If P is the percentage decay rate, then

$$
T_{\text {half }} \approx \frac{70}{P}
$$

assuming that P is relatively small.

- Note that P here is in percents per unit of time. One makes use of this formula in a way similar to that of doubling time formula.

