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Abstract. The hydrophobic-polar (HP) protein folding model was in-
troduced by Ken A. Dill in 1985. It attracted a great deal of attention,
at least until the advent of Google’s AlphaFold in 2018.
In this model, a binary string like 0110 is interpreted as a polymer, a
sequence HPPH of amino acids of two types. The string is embedded in
an ambient space, and this embedding is called a fold. Some folds are
better than others and this is quantified by the score of the fold.
In this project I formalize basic definitions and facts for the HP model
in such a way that Lean can automatically calculate optimal scores. To
speed up the calculation I use recursive backtracking. For good measure,
I prove in Lean that my implementation of recursive backtracking and
its application are correct.
A critical issue when formalizing the HP model seems to be the choice of
definition for the path induced by a sequence of folding moves (like up,
down, left, right). I will present a couple of approaches used with varying
success.

Keywords: Hydrophobic-polar protein folding model · Lean · recursive back-
tracking

1 Introduction

The hydrophobic-polar (HP) protein folding model was proposed by Ken A. Dill
[5]. Its popularity may have peaked around 1998 when the NP-completeness
of the basic problem involved was shown in the 2D and 3D settings ([4], [3]).
With the advent of Google’s AlphaFold this NP-completeness may no longer be
viewed as a severe problem from a practical perspective. However, the model
remains mathematically interesting and a suitable playground for automated
computations in proof assistants.

The basic setup is that a protein is modeled as a sequence from the alphabet
{H,P}. When two occurrences of H are next to each other in the lattice but
not in the sequence, a point is achieved. An optimal folding is one that achieves
the maximum number of points. (In this article we identify H = 0 and P =
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1.) We demonstrate using a Lean formalization that this optimal score in the
hydrophobic-polar protein folding model is non-monotone under concatenation,
in three common variants of the model: 2D, triangular, and hexagonal grids.

2 Nonmonotonicity

Definition 1. Let P2D(x), P3D(x), Ptri(x), Phex(x) denote the maximum num-
ber of points achievable for a word x in the 2D rectangular, 3D rectangular,
triangular, and hexagonal lattices, respectively.

In a March 5, 2023, email message, Jack Stecher conjectured that the HP
folding problem is “weakly monotone”, that is, if we add a prefix or suffix to a
given sequence, our point count should never decrease.

Conjecture 1. Let P be one of the function in Definition 1 and let x, y be binary
words. Then P (x) ≤ P (xy) and P (y) ≤ P (xy).

We’ll call this Stecher’s conjecture in order to anchor the following discussion.
What happened next is a story of the interplay between proof assistant work
and traditional methods.

The same day I found a refutation of the conjecture using a Python script.
A few months later I tasked students Brian Shu, Sophia Kop, and Tung Nguyen
with writing a more reasonable version of the script, employing recursive back-
tracking. Thinking about recursive backtracking, I ended up implementing it in
Lean and proving in Lean that the procedure was correct. At this point it was
natural to formalize further results about protein folding in Lean. At some point
while formalizing further results, I had learned enough about the area to provide
a mathematical refutation of Stecher’s conjecture, showing there are infinitely
many counterexamples, that did not rely on computation. The key new result is
Theorem 1.

Theorem 1. There are infinitely many words w with Prect(w) = Z(w) + 1,
where Z(w) is the number of zeros in w.

Proof. There are examples of each length of the form 26 + 8k, k ≥ 0:

(011)3110(0011)k0110(1100)k110

In terms of l, r, d, u (left, right, down, up) the intended folding has the 25 + 8k
moves

urdrdldrru4l4dd(luld)kldr(drur)kdru.
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The case k = 3 looks like this:

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1

How does this help up resolve Stecher’s conjecture? Well, the famous Handshak-
ing Lemma can be used to prove the following.

Theorem 2 (Agarwala et al. [1, Lemma 2.1]). For all w, Prect(1w1) ≤
Z(w).

Indeed, observe that for each zero in x, there are four directions, two are occupied
by the previous and the next amino acids, and the handshaking lemma gives a
factor of two so that it comes down to 4−2

2 = 1. When the word may start or
end with a zero the bound becomes:

Theorem 3 ([2, Fact 1]). For all w, Prect(w) ≤ Z(w) + 1.

Consequently, if Stecher’s conjecture had held, we would have a proof that
Prect(x) ≤ Z(x) for all x: P (x) ≤ P (1x1) ≤ Z(x).

This proof does not yet work for other lattices. However, with calculations
done using recursive backtracking, first in Python and then in Lean, we obtain
nevertheless:

Theorem 4. Stecher’s conjecture fails in the 2D rectangular lattice, the trian-
gular lattice, and the hexagonal lattice.

For the 2D rectangular lattice an example looks like this:

0 // 1
��

0 // 0 0
��

1

OO

0oo 1oo

(1)

For the triangular lattice, an example looks like this. (It also serves as an example
in the 3D rectangular lattice as indicated by the labels left, right, up, down, front,
back below.)

left 1

��
up

0

??

0 // 1

xxfront 0 // 0 0

&&

back

1

77

0oo 0

��
1oo

down 1

__

right

(2)
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For the triangular lattice (brick wall lattice) an example looks like this:

4
��
// 5 // 6 // 7 // 8

��
3 2oo 1oo A

��
9oo

D Coo Boo

3 Formal verification

We verify some of our results in the proof assistant Lean 4 ([6]). The algorithmic
technique of backtracking is formalized as follows. Since the number of words
having a property P with a given suffix w is most easily evaluated when w is of
full length, we need the datatype Gap.

1 def Gap (b L k : N) : Type := Vector (Fin b) (L - k)
2 def Gap_cons {b n L:N} (a:Fin b) (w : Gap b L.succ n.succ)
3 (h: ¬ n ≥ L.succ) : Gap b L.succ n
4 := 〈a :: w.1, by rw [List.length_cons];simp;exact (Nat.succ_sub

(Nat.not_lt.mp h)).symm〉
5 def Gap_nil {k b L : N} (h : k ≥ L.succ) : Gap b L.succ k
6 := 〈List.nil, by rw [Nat.sub_eq_zero_of_le h];rfl〉

Mathematically, it would perhaps be even more natural to consider the number
of words satisfying P with a given prefix, but the constructor of List in Lean
adds symbols on the left, which makes using suffixes slightly more convenient.

Next num_by_backtracking calculates the number of words (of List type) that
satisfy the conjunction of the predicates P and Q, where the monotonicity of P is
used to shortcut futile searches.

1 def num_by_backtracking {k b L:N}
2 (P: List (Fin b) → Prop) [DecidablePred P]
3 (Q: List (Fin b) → Prop) [DecidablePred Q]
4 (w : Gap b L.succ k) : N := by
5 induction k;exact ((ite (P w.1 ∧ Q w.1) 1 0))
6 exact (ite (P w.1)) (dite (n ≥ L.succ)
7 (fun h 7→ n_ih (Gap_nil h) )
8 (fun h 7→ List.sum (List.ofFn (fun a 7→ (n_ih (Gap_cons a w h)))))) 0

The function num_by_backtracking is recognized as decidable by Lean, so that we
can use it for computations. To use the results in theorems we want to specify
exactly what the function does, and under what conditions. For instance, if P is
not monotone then num_by_backtracking is useless. Thus, we use the following
type.

1 structure MonoPred (b:N) where
2 P : List (Fin b) → Prop
3 preserved_under_suffixes (u v : List (Fin b)): u <:+ v → P v → P u
4 Q (l: List (Fin b)) : Prop := True

Thus, Q is given a default value which can be overridden as desired.
In backtracking_verification we characterize what num_by_backtracking does

when P is monotone. The current proof is several hundred lines of code. The pa-
rameter b is the branching rate of a tree.
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1 theorem backtracking_verification {k b L:N}
2 (bound : k ≤ L.succ) (M:MonoPred b)
3 [DecidablePred M.P] [DecidablePred M.Q]
4 (w : Vector (Fin b) (L.succ-k)):
5 Fintype.card {
6 v : Vector (Fin b) L.succ // (M.P v.1 ∧ M.Q v.1) ∧ w.1 <:+ v.1
7 } = num_by_backtracking M.P M.Q w

In addition to finding the number of solutions, we are interested in finding
the set of solutions,

1 def those_with_suffix′ {k b :N} {L:N} (P: List (Fin b) → Prop)
[DecidablePred P]

2 (Q: List (Fin b) → Prop) [DecidablePred Q] (w : Gap b L.succ k) :
Finset (Gap b L.succ 0) :=

3 by
4 induction k;exact ((ite (P w.1 ∧ Q w.1) {w} ∅))
5 exact (ite (P w.1)) (dite (n ≥ L.succ)
6 (fun h 7→ n_ih (Gap_nil h))
7 (fun h 7→ biUnion (univ : Finset (Fin b)) (
8 (fun a 7→ (n_ih (Gap_cons a w h)))))) ∅

and verifying its basic property:

1 theorem verify_those_with_suffix′ {k b :N} {L:N} (bound : k ≤ L.succ)
2 {M:MonoPred b} [DecidablePred M.P] [DecidablePred M.Q] (w : Gap b L.succ

k) :
3 those_with_suffix′ M.P M.Q w = filter (
4 fun v : Gap b L.succ 0 7→ M.P v.1 ∧ M.Q v.1 ∧ w.1 <:+ v.1
5 ) univ

Now, for the application of backtracking to protein folding. We start with the
four available direction in 2-dimensional rectangular folding.

1 def rectMap (a : Fin 4) : Z×Z := match a with
2 | 0 => (1,0) | 1 => (-1,0) | 2 => (0,1) | 3 => (0,-1)
3 def rect (a : Fin 4) (x: Z×Z) : Z×Z := x + rectMap a

Folding of hexagons, or equivalently folding in a triangular lattice, can be defined
in such a way that it is already embedded in the plane:

1 def hexMap (a : Fin 6) : Z×Z := match a with
2 | 0 => (1,0) | 1 => (-1,0) | 2 => (0,1)
3 | 3 => (0,-1)| 4 => (1,1) | 5 => (-1,-1)
4 def hex (a : Fin 6) (x: Z×Z) : Z×Z := x + hexMap a

Perhaps a more graph-theoretic definition would seem more canonical, but this
definition is ready for use in a theorem.

The function points_tot defines the protein folding score for a word ph (short
for hydrophobic or “H”) as the cardinality of a set. In this and subsequent def-
initions and theorems we require A B : Type, where A is the underlying space,
typically Z × Z and B is the set of possible moves, typically Fin b for some
b:N such as b = 4. Further, (go : B → A → A) defines the moves, l:N is a
length, (fold : Vector A l) consists of the embedded locations, (ph : Vector
Bool l) (or l.succ) is true for hydrophobic amino acids. The moves are given as
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(moves: Vector (Fin b) l). In the more recent versions of the code we replace
Vector (Fin b) l by Fin l → Fin b. We assume [DecidableEq A], [OfNat A 0]
(the fold is assumed to start at the “origin”) and [Fintype B]. Moreover, we
assume open Finset has been invoked.

1 def points_tot := card (filter (fun ik : (Fin l) × (Fin l) 7→ ((pt_loc
go fold ik.1 ik.2 ph): Prop)) univ)

Here, pt_loc is:
1 def pt_loc (i j : Fin l) := ph.get i && ph.get j && i.1.succ < j.1 &&

nearby go (fold.get i) (fold.get j)

The nearby function,
1 def nearby (p q : A) : Bool := ∃ a : B, q = go a p

is symmetric in most models of protein folding, but not in the prudent rectan-
gular model in which the only allowed moves are right, left, down. One of the
main formalized results states that the score for a word of length ` in a folding
model with b many possible moves is at most 1

2 min{b(`+ 1), `(`− 1)}.
1 theorem pts_earned_bound (hP: Symmetric (fun x y 7→ nearby go x y))
2 (path_inj : (Function.Injective fun k => (path_v go moves).get k))
3 : pts_tot′ go ph (path_v go moves) ≤ (min (l.succ ∗ b) (l ∗ l.pred)) /

2

The first bound b(`+ 1)/2 is obtained by a Handshake Lemma type argument.
The Handshake Lemma is already in Mathlib [8] and could have been used. The
proof involves some manipulations of Finset types and their cardinalities, and a
choice function of the following type:

1 def choice_ex (P : B → Fin l → Prop)
2 : (filter (fun a 7→ ∃ i, P a i) (univ : Finset B))
3 → (filter (fun i 7→ ∃ a, P a i) (univ : Finset (Fin l)))

In the intended application, P a i means that there is a match in the protein
folding in direction a starting from location i. With appropriate bijectivity as-
sumptions we obtain:

1 theorem choice_ex_finset_card {P : B → Fin l.succ → Prop}
2 (h_unique_loc_dir : (∀ {a i0 i1}, P a i0 → P a i1 → i0 = i1)
3 ∧ ∀ {i a0 a1}, P a0 i → P a1 i → a0 = a1):
4 card (filter (fun a 7→ ∃ i, P a i) univ) =
5 card (filter (fun i 7→ ∃ a, P a i) univ)

Another pair of main results proved is the following inequalities: Ptri ≤
Prect ≤ Phex. These follow from a theory of embeddings of folding models:

1 def is_embedding {b0 b1 : N} (go0 : Fin b0 → A → A)
2 (go1 : Fin b1 → A → A) (f : Fin b0 → A → Fin b1) :=
3 ∀ i : Fin b0, ∀ x : A, go0 i x = go1 (f i x) x

The computable function HP gives the optimal score for a given word:
1 def HP (ph : Vector Bool l.succ) :N := Nat.find (pts_tot_bound_exists go

ph)

Thus, the optimal score is the least number that serves as an upper bound on
the score.



Protein folding by recursive backtracking 7

Orderliness and walks. For computational speed it is important to restrict at-
tention to orderly [9] walks. This means that for two walks that are identical up
to symmetry, we only consider one of them. Proving that this can be done with-
out loss of generality seems to require a flexible definition of these walks. The
best way to do so is something to be determined, although several candidates
have been tried. A similar problem arises in automata theory. Mathlib has an
implementation of deterministic finite automata [10], but not yet the sequence
of states visited by a DFA when reading a given word. Nevertheless, some Lean
exercises in this vein were included in a recent book [7].

One trick is to consider walks implicitly rather than explicitly defined. That
is, a walk is simply a sequence of points in Z×Z such that each point is obtained
from the previous by one of the permissible moves.

1 def isPathWitness (fold : Fin l.succ → A) := (i : Fin l) →
2 { a : B // fold i.succ = go a (fold (Fin.castSucc i))}

This is simpler than saying that a walk is defined inductively from a sequence
of moves. An example of this definition in action:

1 theorem orderliness_rotate (ph : Fin l.succ.succ → Bool)
2 (fold : Fin l.succ.succ → Z×Z) (f : isPathWitness rect fold)
3 : ∃ fold′, ∃ _ : isPathWitness rect fold′,
4 pts_tot′F rect ph fold = pts_tot′F rect ph fold′

5 ∧ fold′ 1 = rect 0 (fold′ 0)

Another possibility is to restrict attention to those protein folding models where
each step can be viewed as adding a vector:

1 def path {A:Type} [AddCommMonoid A] {B : Type} (goMap : B → A)
2 {l : N} (moves : Fin l → B) : Fin l.succ → A :=
3 fun i 7→ sum univ (
4 fun (j : Fin i) 7→ (goMap (moves (〈j.1, Fin.val_lt_of_le j

(Fin.is_le i)〉)))
5 )

This does not cover the case of the brick wall lattice, where “go right, then
vertically” is not the same as “go vertically, then right”.

Conclusion

Doing mathematics research and formalization work simultaneously can be syn-
ergetic, and protein folding models are a great target for formalization. We are
still interested in finding an optimal way to work with inductively defined paths.
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