
On the degrees of constructively immune sets

Samuel D. Birns1 and Bjørn Kjos-Hanssen1[0000−0002−1825−0097]?
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Abstract. Xiang Li (1983) introduced what are now called construc-
tively immune sets as an effective version of immunity. Such have been
studied in relation to randomness and minimal indices, and we add an-
other application area: numberings of the rationals. We also investigate
the Turing degrees of constructively immune sets and the closely related
Σ0

1 -dense sets of Ferbus-Zanda and Grigorieff (2008).
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1 Introduction

Effectively immune sets, introduced by Smullyan in 1964 [11], are well-known
in computability as one of the incarnations of diagonal non-computability, first
made famous by Arslanov’s completeness criterion. A set A ⊆ ω is effectively
immune if there is a computable function h such that |We| ≤ h(e) whenever
We ⊆ A, where {We}e∈ω is a standard enumeration of the computably enumer-
able (c.e.) sets.

There is a more obvious effectivization of immunity (the lack of infinite com-
putable subsets), however: constructive immunity, introduced by Xiang Li [7]
who actually (and inconveniently) called it “effective immunity”.

Definition 1. A set A is constructively immune if there exists a partial recur-
sive ψ such that for all x, if Wx is infinite then ψ(x) ↓ and ψ(x) ∈Wx \A.

The Turing degrees of constructively immune sets and the related Σ0
1 -dense

sets have not been considered before in the literature, except that Xiang Li
implicitly showed that they include all c.e. degrees. We prove in Section 3 that
the Turing degrees of Σ0

1 -dense sets include all non-∆0
2 degrees; all high degrees,

and all c.e. degrees. We do not know whether they include all Turing degrees.
The history of the study of constructive immunity seems to be easily sum-

marized. After Xiang Li’s 1983 paper, Odifreddi’s 1989 textbook [8] included
Li’s results as exercises, and Calude’s 1994 monograph [2] showed that the set
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RANDC
t = {x : C(x) ≥ |x| − t} is constructively immune, where C is Kol-

mogorov complexity. Schafer 1997 [10] further developed an example involving
minimal indices, and Brattka 2002 [1] gave one example in a more general set-
ting than Cantor space. Finally in 2008 Ferbus-Zanda and Grigorieff proved an
equivalence with constructive Σ0

1 -density.

Definition 2 (Ferbus-Zanda and Grigorieff [5]). A set A ⊆ ω is Σ0
1 -dense

if for every infinite c.e. set C, there exists an infinite c.e. set D such that D ⊆ C
and D ⊆ A.

If there is a computable function f : ω → ω such that for each We, Wf(e) ⊆
A∩We, and Wf(e) is infinite if We is infinite, then A is constructively Σ0

1 -dense.

We should note that while the various flavors of immune sets are always
infinite by definition, Ferbus-Zanda and Grigorieff do not require Σ0

1 -dense sets
to be co-infinite.

The Σ0
1 -dense sets form a natural Π0

4 class in 2ω that coincides with the
simple sets on ∆0

2 but is prevalent (in fact exists in every Turing degree) outside
of ∆0

2 by Theorem 15 below. Natural global generalizations of local properties
are studied in other contexts: N is definable in Z via Lagrange’s four squares
theorem, but N is not first order definable in the real field R.

2 Σ0
1-density

To show that there exists a set that is Σ0
1 -dense, but not constructively so, we

use Mathias forcing.

Definition 3. A Mathias condition is a pair (d,E) where d,E ⊆ ω, d is a finite
set, E is an infinite computable set, and max(d) < min(E). A set A is weakly
Mathias n-generic if A meets every Σ0

n definable set of Mathias conditions. A is
weakly Mathias generic if A is weakly Mathias n-generic for each n.

Theorem 1. If A is Mathias generic, then

1. A is co-Σ0
1 -dense.

2. A is not constructively co-Σ0
1 -dense.

Proof. 1. Given an infinite We, how do we force Ac to contain an infinite c.e. sub-
set of We, i.e., A to be disjoint from an infinite c.e. subset of We? Given a con-
dition (a,A), if A∩We is already finite then we are done. If infinite then A∩We

is c.e. hence has an infinite computable subset D and we move to the condition
(a,D).
2. If f is a computable function it suffices to ensure that for some i, Wi is infinite,
yet Wf(i) is not a subset of A. Given a condition, the infinite part is an infinite
computable set Wi. We can then precisely ensure that the next condition we
extend to is such that we overlap Wf(i). This can be done by a finite extension
(making only finitely many changes to the condition).
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Theorem 2 ([5, Proposition 3.3]). Z ⊆ ω is constructively immune if and
only if it is infinite and its complement is constructively Σ0

1 -dense.

Since Ferbus-Zanda and Grigorieff’s paper has not gone through peer review, we
provide the proof.

Proof. ⇐: Let the function g witness that ω \ Z is constructively Σ0
1 -dense.

Define a partial recursive function ϕ by stipulating that ϕ(i) is the first number
in the enumeration of Wg(i), if any.
⇒: Define a partial recursive function µ(i, n) by

– µ(i, 0) = ϕ(i);
– µ(i, n+ 1) = ϕ(in), where in is such that Win = Wi \ {µ(i,m) : m ≤ n}.

Let g be total recursive so that Wg(i) = {µ(i,m) : m ∈ ω}. If Wi is infinite then
all µ(i,m)’s are defined and distinct and belong to Wi ∩ Z. Thus, Wg(i) is an
infinite subset of Wi ∩ Z.

Recall that a c.e. set is simple if it is co-immune.

Theorem 3 (Xiang Li [7]). Let A be a set and let {φx}x∈ω be a standard
enumeration of the partial computable functions.

1. If A is constructively immune then A is immune and A is not immune.
2. If A is simple then A is constructively immune.
3. {x : (∀y)(φx = φy → x ≤ y)} is constructively immune.

2.1 Numberings

A numbering of a countable set A is an onto function ν : ω → A. The theory of
numberings has a long history [4]. Numberings of the set of rational numbers Q
provide an application area for Σ0

1 -density. Rosenstein [9, Section 16.2: Looking
at Q effectively] discusses computable dense subsets of Q. Here we are mainly
concerned with noncomputable sets.

Theorem 4. Let ν : ω → Q be an injective numbering of Q and let A ⊆ ω.
ν(A) is dense for every computable numbering ν iff A is co-immune.

Proof. If A contains an infinite c.e. set We, consider the computable numbering
that maps We to [0, 1]. Then A is not meager under ν.

Conversely, assume A is not dense for some computable ν. Then, if {xn} is
some converging sequence of rationals outside ν(A), ν−1 ({xn}) is a c.e. subset
of A.

Definition 4. A subset A of Q is co-nowhere dense if for each interval [a, b] ⊆
Q, [a′, b′] ⊆ A for some [a′, b′] ⊆ [a, b].

Theorem 5. A set is co-nowhere dense under every numbering iff it is co-finite.
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Proof. Only the forward direction needs to be proven; the other direction is
immediate. Let A be a co-infinite set, and define ν by letting ν map ω \A onto
[0, 1]. Then A is not co-nowhere dense.

Theorem 6. A is infinite and non-immune iff there exists a computable num-
bering with respect to which A is co-nowhere dense.

Proof. Let A be infinite and not immune. Thus, there is an infinite We ⊆ A for
some e. Let ν be a computable numbering that maps We onto Q \ ω. Then A is
co-nowhere dense under ν.

Conversely, let A be co-nowhere dense under some computable numbering ν.
Then ν−1([0, 1]) is an infinite c.e. subset of A.

A set is effectively dense if there is a computable function f(a, b) giving an
element of A ∩ (a, b) for a < b ∈ Q.

Theorem 7. A set A is constructively Σ0
1 -dense iff it is effectively dense for all

computable numberings.

Proof. By Theorem 2, A is constructively Σ0
1 -dense iff it is infinite and con-

structively immune. Constructively immune implies effectively dense since the
witnessing function for constructive immunity can be be used to witness effec-
tive density. For the converse we exploit the assumption that we get to choose a
suitable ν.

3 Prevalence of Σ0
1-density

In this section we investigate the existence of Σ0
1 -density in the Turing degrees

at large.

3.1 Closure properties and Σ0
1-density

Theorem 8. 1. The intersection of two Σ0
1 -dense sets is Σ0

1 -dense.
2. The intersection of two constructively Σ0

1 -dense sets is constructively Σ0
1 -

dense.

Proof. Let A and B be Σ0
1 -dense sets. Let We be an infinite c.e. set. Since A is

Σ0
1 -dense, there exists an infinite c.e. set Wd ⊆ A ∩We. Since B is Σ0

1 -dense,
there exists an infinite c.e. set Wa ⊆ B∩Wd. Then Wa ⊆ (A∩B)∩We, as desired.
This proves (1). To prove (2), let f and g witness the effective susceptibility of
A and B, respectively. Given We, we have Wf(e) ⊆ A ∩We and then

Wg(f(e)) ⊆ B ∩Wf(e) ⊆ A ∩B ∩We.

In other words, g ◦ f witnesses the effective susceptibility of A ∩B.

Theorem 9. Bi-Σ0
1 -dense sets do not exist.
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Proof. If A and Ac are both Σ0
1 -dense then by Theorem 8, A ∩Ac is Σ0

1 -dense,
which is a contradiction.

For sets A and B, A ⊆∗ B means that A \B is a finite set.

Theorem 10. 1. If A is Σ0
1 -dense and A ⊆∗ B, then B is Σ0

1 -dense.
2. If A is constructively Σ0

1 -dense and A ⊆∗ B, then B is constructively Σ0
1 -

dense.

Proof. Let We be an infinite c.e. set. Since A is Σ0
1 -dense, there exists an infinite

c.e. set Wd such that Wd ⊆ A∩We. Let Wc = Wd \ (A\B). Since A\B is finite,
Wc is an infinite c.e. set. Since Wd ⊆ A, we have Wc = Wd∩ (B∪Ac) = Wd∩B.
Then, since Wd ⊆ We, we have Wc ⊆ B ∩ We, and we conclude that B is
Σ0

1 -dense. This proves (1). To prove (2), if f witnesses that A is constructively
Σ0

1 -dense then a function g with Wg(e) = Wf(e) \ (A \ B) witnesses that B is
constructively Σ0

1 -dense.

Theorem 11. Let B be a co-finite set. Then B is constructively Σ0
1 -dense.

Proof. The set ω is constructively Σ0
1 -dense as witnessed by the identity function

f(e) = e. Thus by Item 2 of Theorem 10, B is as well.

As usual we write A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.

Theorem 12. 1. If X0 and X1 are Σ0
1 -dense sets then so is X0 ⊕X1.

2. If X0 and X1 are constructively Σ0
1 -dense sets then so is X0 ⊕X1.

Proof. Let We = Wc0 ⊕ Wc1 be an infinite c.e. set. For i = 0, 1, since Xi is
Σ0

1 -dense there exists Wdi ⊆ Xi ∩Wci such that Wdi is infinite if Wci is infinite.
Then Wd0

⊕Wd1
is an infinite c.e. subset of (X0 ⊕X1) ∩We.

This proves (1). To prove (2), if di are now functions witnessing the effective
susceptibility of Xi then Wdi(ci) ⊆ Xi ∩Wci , and Wd0(c0)⊕Wd1(c1) is an infinite
c.e. subset of (X0 ⊕X1) ∩We. Thus a function g satisfying

Wg(e) = Wd0(c0) ⊕Wd1(c1),

where We = Wc0 ⊕Wc1 , witnesses the effective susceptibility of X0 ⊕X1.

Theorem 13. There is no Σ0
1 -dense set A such that all Σ0

1 -dense sets B satisfy
A ⊆∗ B.

Proof. Suppose there is such a set A. Let Wd be an infinite computable subset
of A. Let G be a Mathias generic with G∩W c

d = ∅, i.e., G ⊆Wd. Then B := Gc

is Σ0
1 -dense by Theorem 1. Thus A ∩ Gc is also Σ0

1 -dense by Theorem 8. And
G ⊆Wd ⊆ A and by assumption A ⊆∗ Gc so we get G ⊆∗ Gc, a contradiction.

These results show that the Σ0
1 -dense sets under ⊆∗ form a non-principal

filter whose Turing degrees form a join semi-lattice.

Corollary 1. Let A be a c.e. set. The following are equivalent:
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1. A is co-infinite and constructively Σ0
1 -dense.

2. A is co-infinite and Σ0
1 -dense.

3. A is co-immune.

Proof. 1 =⇒ 2 =⇒ 3 is immediate from the definitions, and 3 =⇒ 1 is
immediate from Theorem 2 and Theorem 3.

Corollary 2. Every c.e. Turing degree contains a constructively Σ0
1 -dense set.

Proof. Let a be a c.e. degree. If a > 0 then a contains a simple set A, see, e.g.,
[12], so Corollary 1 finishes this case. The degree 0 contains all the co-finite sets,
which are constructively Σ0

1 -dense by Theorem 11.

3.2 Cofinality in the Turing degrees of constructive Σ0
1-density

Definition 5. For k ≥ 0, let Ik be intervals of length k+2 such that min(I0) = 0
and max(Ik) + 1 = min(Ik+1).

Let Ve be a subset of We be defined by the condition that we let x enter Ve
at a stage where x enters We if doing so is permitted by the rule: for all j ≤ k,
|Vj ∩ Ik| ≤ 1; for all j > k, Vj ∩ Ik = ∅.

Lemma 1. There exists a c.e., co-infinite, constructively Σ0
1 -dense, and effec-

tively co-immune set.

Proof. Let A =
⋃

e∈ω Ve. Ve is c.e. by construction, and if We is infinite, Ve is also
infinite. So Ve = Wf(e) is the set witnessing that A is constructively Σ0

1 -dense.
Moreover A is coinfinite since |A ∩ Ik| ≤ k + 1 < k + 2 = |Ik| gives Ik 6⊆ A

for each k and

|ω \A| =

∣∣∣∣∣
(⋃

k∈ω

Ik

)
\A

∣∣∣∣∣ =

∣∣∣∣∣⋃
k∈ω

(Ik \A)

∣∣∣∣∣ =
∑
k∈ω

|Ik \A| ≥
∑
k∈ω

1 =∞.

The set A is effectively co-immune because if We is disjoint from A then since
as soon as a number in Ik for k ≥ e enters We then that number is put into A,

We ⊆
⋃

k<e Ik so |We| ≤
∑

k<e(k + 2) =
∑

k≤e+1 k = (e+1)(e+2)
2 .

Theorem 14. For each set R there exists a constructively Σ0
1 -dense, effectively

co-immune set S with R ≤T S.

Proof. Let R be any set, which we may assume is co-infinite. Let A be as in
Lemma 1. Let S ⊇ A be defined by

S = A ∪
⋃
k∈R

Ik.

Since A ⊆ S and S is co-infinite, S is constructively Σ0
1 -dense and effectively

co-immune. Since k ∈ R ⇐⇒ Ik ⊆ S, we have R ≤T S.

6



3.3 Non-∆0
2 degrees

Lemma 2. Suppose that T ⊆ 2<ω is a tree with only one infinite path. Then for
each length n there exists a length m > n such that exactly one string of length
n has an extension of length m in T .

Proof. Suppose not, i.e., there is a length n such that for all m > n there are
at least two strings σm, τm of length n with extensions of length m in T . By
the pigeonhole principle there is a pair (σ, τ) that is a choice of (σm, τm) for
infinitely many m. Then by compactness both σ and τ must be extendible to
infinite paths of T .

Lemma 3. Suppose that T ⊆ 2<ω is a tree with only one infinite path A, and
that T is a c.e. set of strings. Then A is ∆0

2.

Proof. By Lemma 2, for each length n there exists a length m > n such that
exactly one string of length n has an extension of length m in T . Using 0′ as an
oracle we can find that m and define A � n by looking for such a string. In fact,
T ≤T 0′ and so its unique path A ≤T 0′ as well.

Theorem 15. Given A ∈ 2ω, let Â := {σ ∈ 2<ω | σ ≺ A} be the set of finite
prefixes of A. If A is not ∆0

2 then Â is co-Σ0
1 -dense.

Proof. Let A∗ be the complement of Â. Suppose we have an infinite c.e. set of
strings We. By compactness there is at least one real B with infinitely many
prefixes in T , the downward closure of We.

Case 1: The only such real is B = A. Then by Lemma 3, A is ∆0
2.

Case 2: There is a B 6= A with infinitely many prefixes in T . Then let σ be
a prefix of B that is not a prefix of A. Consider [σ] ∩Wd ⊆ [σ] ∩ T . This is now
our desired infinite subset of A∗ and also subset of We.

3.4 High degrees

Definition 6. A set A is co-r-cohesive if its complement is r-cohesive. This
means that for each computable (recursive) set Wd, either Wd ⊆∗ A or W c

d ⊆∗ A.

Definition 7 (Odifreddi [8, Exercise III.4.8], Jockusch and Stephan
[6]). A set A is strongly hyperhyperimmune (s.h.h.i.) if for each computable
f : ω → ω for which the sets Wf(e) are disjoint, there is an e with Wf(e) ⊆ ω\A.

A set A is strongly hyperimmune (s.h.i.) if for each computable f : ω →
ω for which the sets Wf(e) are disjoint and computable, with

⋃
e∈ωWf(e) also

computable, there is an e with Wf(e) ⊆ ω \A.

Theorem 16. Every s.h.i. set is co-Σ0
1 -dense.

Proof. Let A be s.h.i. Let We be an infinite c.e. set. Let Wd be an infinite
computable subset of We. Effectively decompose Wd into infinitely many disjoint
infinite computable sets,

Wd =
⋃
i∈ω

Wg(d,i).
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For instance, if Wd = {a0 < a1 < . . . } then we may let Wg(e,i) = {an : n =
2i(2k+1), i ≥ 0, k ≥ 0}. Since A is s.h.i., there exists some ie such that Wg(d,ie) ⊆
Ac. The sets Wg(d,ie) witness that Ac is Σ0

1 -dense.

Clearly r-cohesive implies s.h.i., and s.h.h.i. implies s.h.i. It was shown by
Jockusch and Stephan [6, Corollary 2.4] that the cohesive degrees coincide with
the r–cohesive degrees and (Corollary 3.10) that the s.h.i. and s.h.h.i. degrees
coincide.

Theorem 17. Every high degree contains a Σ0
1 -dense set.

Proof. Let h be a Turing degree. If h 6≤ 0′, then h contains a Σ0
1 -dense set by

Theorem 15.

If h ≤ 0′ and h is high then since the strongly hyperhyperimmune and
cohesive degrees coincide, and are exactly the high degrees [3], h contains a
strongly hyperimmune set. Hence by Theorem 16, h contains a Σ0

1 -dense set.

3.5 Progressive approximations

Definition 8. Let A be a ∆0
2 set. A computable approximation {σt}t∈ω of A,

where each σt is a finite string and limt→∞ σt = A, is progressive if for each t,

– if |σt| ≤ |σt−1| then σt � (|σt| − 1) = σt−1 � (|σt| − 1) (the last bit of σt is the
only difference with σt−1);

– if |σt| > |σt−1| then σt−1 ≺ σt; and

– if σt 6≺ σs for some s > t then σt 6≺ σs′ for all s′ ≥ s (once an approximation
looks wrong, it never looks right again).

If A has a progressive approximation then we say that A is progressively approx-
imable.

Note that a progressively approximable set must be h-c.e. where h(n) = 2n.

Theorem 18. Let A be a progressively approximable and noncomputable set. Let
{σt}t∈ω be a progressive approximation of A. Then {t : σt ≺ A} is constructively
immune.

Proof. Let We be an infinite c.e. set and let T be an infinite computable subset
set We. Since A is noncomputable, we do not have T ⊆ {t : σt ≺ A}. Since the
approximation {σt}t∈ω is progressive, once we observe a t for which σt 6≺ σs, for
some s > t, then we know that σt 6≺ A. Then we define ϕ(e) = t, and ϕ witnesses
that {t : σt ≺ A} is constructively immune.

A direction for future work may be to find new Turing degrees of progressively
approximable sets.
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Appendix

Let A and B be sets, with B computable. We say that A is co-immune within
B if there is no infinite computable subset of Ac ∩ B. The following diagram
includes some claims not proved in the paper. The quantifiers ∃ν, ∀ν range over
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computable numberings of Q.

co-finite (Theorem 5)
(eff.) co-nowhere dense ∀ν

//

constructively
Σ0

1 -dense (Theorem 7)
constr. co-immune

eff. dense ∀ν
strict: Theorem 1

��
Σ0

1 -dense

strict: ω⊕∅
tt strict: any bi-immune

��
infinite & non-immune (Theorem 6)

(eff.) co-nowhere dense ∃ν
eff. dense ∃ν

))

co-immune (Theorem 4)
dense ∀ν

��

dense ∃ν co-immune within
some infinite computable set

oo
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