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Abstract. The hydrophobic-polar (HP) protein folding model was in-
troduced by Ken A. Dill in 1985. In this model, a binary string like 0110
is interpreted as a polymer, a sequence HPPH of amino acids of two
types. The string is embedded in an ambient space, and this embedding
is called a fold. Some folds are better than others and this is quantified
by the score of the fold.
We prove that the optimal score function is not monotonic under con-
catenation for the 2D rectangular lattice, the 3D rectangular lattice, the
hexagonal lattice, and the triangular lattice. In other words, the concate-
nation of two polymers may have strictly lower minimum energy than
either polymer.

Keywords: Hydrophobic-polar protein folding model, monotonicity, con-
catenation

1 Introduction

Protein folding prediction has long been considered an intractable problem. In
order to make this precise, in 1985 Ken A. Dill [6] introduced a mathematical
model, the hydrophobic-polar (HP) protein folding model. It was no real surprise
when the NP-completeness of its optimality problem was demonstrated in both
the two- and three-dimensional settings [4,3]. Google’s AlphaFold [10] showed
that in practical terms protein folding is more feasible than the NP-completeness
would suggest. However, the HP model remains mathematically fascinating.

Its basic setup is that a protein is modeled as a word w from the alphabet
{H,P}. A fold is a self-avoiding walk in a lattice graph labeled by consecutive
entries of w. When two non-consecutive occurrences of H are connected by an
edge in the lattice, a point is achieved:

H P

H P

An optimal fold is one that achieves the maximum number of points. (In this
article we identify H = 0 and P = 1.)

https://math.hawaii.edu/wordpress/bjoern/
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We can view this as an example of parametric optimization. For a word
θ ∈ Θ ∈ {0, 1}∗, and folds x, the optimal value function J is given by

J(θ) = max
x

f(x, θ),

where the fitness function or objective function f gives the score of θ under the
fold x. If we write f = −E where E stands for energy, the task is to minimize
energy.

The folds x may equivalently be viewed as either sequences of consecutive
locations in the lattice, or sequences of “moves” describing how to get the next
locations from the previous.

Combinatorial embeddings of graphs. A combinatorial embedding of a graph
is a pair of permutations (v, e) which act on a set B of 2|E(G)| darts. The
permutation e is an involution, and its orbits correspond to edges in the graph.
Similarly, the orbits of v correspond to the vertices of the graph, and those of
f = ve correspond to faces of the embedded graph.1 A move is a number k
such that the next dart is vke of the current dart. However, traditionally in
the literature on protein folding one considers actual embeddings into specific
lattices like Z2 rather than combinatorial embeddings; hence we shall say no
more on the topic.

Automatic complexity. There is an interesting similarity between the HP model
and automatic complexity [11]. We can view a point scored as a negative state.
When a point is scored, the polymer is returning to a previous location, analo-
gously to how an automaton returns to a state. Minimizing the number of states
corresponds to maximizing the number of returns to previous states, which is
(except for the division into hydrophobic and polar amino acids) analogous to
minimizing the energy which is the negative of the score.

Overview of the paper. In Section 2, we demonstrate that the optimal score in the
hydrophobic-polar protein folding model is non-monotone under concatenation,
in several common variants of the model: 2D, 3D, triangular, and hexagonal
grids.

For 2D rectangular and hexagonal we can prove this as a corollary of con-
structing an optimal fold in terms of the number of hydrophobic amino acids
Z(w).

For 2D rectangular, 3D rectangular, and triangular lattice we can prove it
by a direct construction using isoperimetric inequalities.

See Table 1 for an overview of these results.
In Section 3 we show that this nonmonotonicity is prevalent enough to obtain

an NP-hardness result. Finally, in Section 4 we obtain optimal closed folds with
knots and links in the 3D HP model.
1 https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/genus.html

https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/genus.html
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Lattice Proof using Z-optimality Isoperimetric fact Proof using that fact

triangular not known Theorem 9 Theorem 10
hexagonal Theorem 6 not possible
2D rectangular Theorem 1 Theorem 13 Theorem 14
3D rectangular not known Theorem 12 Theorem 15

Table 1: Nonmonotonicity results for optimal protein folding in HP models.

2 Nonmonotonicity

Definition 1. Let Jrect(x), Jcube(x), Jtri(x), Jhex(x) denote the maximum num-
ber of points achievable for a word x in the 2D and 3D rectangular, triangular,
and hexagonal lattices, respectively.

In a March 5, 2023, email message [12], Jack Stecher conjectured that the
HP folding problem is “weakly monotone”, i.e., that whenever we add a prefix or
suffix to a given word, our optimal score should never decrease.

Conjecture 1 (Stecher’s cul-de-sac conjecture). Let x, y be binary words. Then
Jrect(x) ≤ Jrect(xy).

Clearly the reverse xR of a word x satisfies J(x) = J(xR). Therefore, we could
equivalently conjecture that Jrect(y) ≤ Jrect(xy). To refute the conjecture we
make use of Theorem 1, which is also of independent interest.

Theorem 1. There are infinitely many words w with Jrect(w) = Z(w)+1, where
Z(w) is the number of zeros in w.

Proof. There are examples of each length of the form 26 + 8k, k ≥ 0:

(011)3110(0011)k0110(1100)k110 (1)

A suitable fold is defined by the 25 + 8k moves

urdrdldrru4l4dd(luld)kldr(drur)kdru,

where u is “up”, l is “left”, d is “down”, and r is “right”. The case k = 3 is shown
in Figure 1. See Figure 2 for a witness for the hexagonal lattice.

Theorem 2 (Agarwala et al. [1, Lemma 2.1]). For all w, Jrect(1w1) ≤
Z(w).

Proof. Each zero in x = 1w1 is internal, i.e., it is neither the first nor the last bit
of x. Therefore, among the four “heavenly” directions from the location of the
zero, two are occupied by the previous and the next amino acids, and the other
two could each contribute to a point. As each edge is shared by two vertices, by
the Handshaking Lemma each zero contributes on average at most one point.

When the word may start or end with a zero the bound becomes:
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1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1

Fig. 1: A 2D rectangular fold achieving the maximum score in terms of the num-
ber of zeros. While this result appears to be new, a special case with Z = 6 was
found by Matthew Gilzinger [7, Figure 13].

1

1 1

1 0 1 1 1 1

0 0 0 0 0 1

1 0 0 0 0 1

1 1 1 1 1

Fig. 2: A hexagonal lattice fold achieving the maximum score Z(w)/2+ 1 = 6 in
terms of the number of zeros Z(w) = 10 in the folded word.
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Theorem 3 ([2, Fact 1]). For all w, Jrect(w) ≤ Z(w) + 1.

Proof. There are now up to three available heavenly directions where a point
may be earned at the first and last bits of w. The upper bound is therefore, with
w = w1 . . . wn, each wi ∈ {0, 1},

3 · 1w1=0 + (
∑n−1
i=2 2 · 1wi=0) + 3 · 1wn=0

2
≤

(
n∑
i=1

1wi=0

)
+ 1 = Z(w) + 1.

Here, the indicator symbol 1P is 1 if P holds and 0 otherwise.

Corollary 1. The cul-de-sac conjecture is false.

Proof. Suppose otherwise. Let x be a word of the form (1). Then we have the
arithmetic contradiction

Z(x) + 1 = Jrect(x) by Theorem 1,
≤ Jrect(1x1) by the cul-de-sac conjecture,
≤ Z(x) by Theorem 2.

The vertices of the hexagonal lattice are vertices of hexagons and form a
3-regular graph.

Theorem 4. For all w, Jhex(1w1) ≤ Z(w)/2.

Proof. Each zero in x = 1w1 is internal, i.e., it is neither the first nor the last
bit of x. Therefore, among the three “heavenly” directions from the location of
the zero, two are occupied by the previous and the next amino acids, and the
other one could contribute to a point. As each edge is shared by two vertices,
by the Handshaking Lemma each zero contributes on average at most one half
of a point.

When the word may start or end with a zero the bound becomes:

Theorem 5. For all w, Jhex(w) ≤ Z(w)/2 + 1.

Proof. There are now up to two available heavenly directions where a point
may be earned at the first and last bits of w. The upper bound is therefore, with
w = w1 . . . wn, each wi ∈ {0, 1},

2 · 1w1=0 + (
∑n−1
i=2 1 · 1wi=0) + 2 · 1wn=0

2
≤ 1

2

(
n∑
i=1

1wi=0

)
+ 1 = Z(w)/2 + 1.

Theorem 6. For each integer k ≥ 1, the word wk = 014011(01)k11(10)k satis-
fies Jhex(wk) = Z(wk)/2 + 1.

Proof. Using the fold in (2) we obtain Jhex(w) = Z(w)/2 + 1, which is the best
possible by Theorem 4.
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Corollary 2. There are infinitely many counterexamples to the cul-de-sac con-
jecture for the hexagonal lattice.

The proof of Corollary 2 has the same steps as the proof of Corollary 1.

Theorem 7. Let x be a binary word and J ∈ {Jrect, Jtri, Jhex}. Then J(x1) ≤
J(x) and J(1x) ≤ J(x).

Proof. If F is a fold achieving maximum score for x1 then we obtain a fold of
x with the same score simply by removing the final (respectively, initial) 1 from
the fold.

Theorem 8 provides one way of going from one counterexample to infinitely
many, in the case of the cul-de-sac conjecture. In general, such an improvement is
of interest because it necessarily requires insight beyond brute force computation.

Theorem 8. For J ∈ {Jrect, Jtri, Jhex}, if J(x1) < J(x) is witnessed by a fold
F of x which can be extended to a fold of 1mx for some m ∈ N then J(1mx1) <
J(1mx) as well.

Proof. Using Theorem 7 and our assumptions we have

J(1mx1) ≤ J(x1) < J(x) = J(1mx).

Theorem 9 records the fact that if n = 1 + 3r(r + 1) then Dn = Br (the
closed ball with radius r, also known as the hexagonal daisy Dn) is a solution to
the edge-isoperimetric problem for cardinality n. This means that the minimum
number of edges connect vertices in the set Br to vertices outside the set, among
all sets of cardinality n.

Theorem 9 ([8, Corollary 7.1]; see also [5]). For n = 1 + 3r + 3r2, the
hexagonal daisy Dn is the unique minimizer of the edge-isoperimetric problem
for the triangular lattice.

Given words η, θ, we define Iη(θ) = occ(θ, η) to be the number of occurrences
of η in θ. For example, I00(001000) = 3. The statistic I00(θ) represents the
number of internal “hydrophobic” connections of θ.

Theorem 10. There are infinitely many counterexamples to the cul-de-sac con-
jecture for the triangular lattice.

Proof. We shall exhibit for each n ∈ N a pair (x,w) of a fold x and a word w
such that

– w contains no subword 02n+1, and
– for each word v with Z(v) = Z(w), if I00(1v1)+f(y, 1v1) ≥ I00(w)+f(x,w)

then v contains a subword 02n+1.
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1

1
��

0 0 1

0b 0a 0

1 0 0 1

1

(a) Pair (x, ζ) with I00(ζ) = 1,f(x, ζ)) =
11, ζ = 0(01)6.

0 0

0b 0a 0

0 0

(b) Pair (y, η) with I00(η) = 6, f(y, η) = 6,
η = 07.

Fig. 3: Illustration of the Induced Edge Problem solution for the triangular lat-
tice.

(We apply this with v = w.) The fold x will be such that the zeros of w are
organized in a metric ball, which forces y to do the same for 1v1.

Indeed, by Theorem 9, for any words η, θ with Z(η) = Z(θ) and where
I00(ζ) ≥ I00(η), and any folds x, y, if x has the zeros of η in a metric ball then
f(x, η) ≥ f(y, ζ).

This is because in general, if the zeros of a word ζ are organized in a metric
ball by a fold x then

I00(ζ) + f(x, ζ) = max
η:Z(η)=Z(ζ)

I00(η) + f(y, η).

For example, the pairs (x, ζ), (y, η) in Figure 3 both realize the maximum
above.2

Therefore, in any fold y of 1v1 with f(y, 1v1) = J(1v1), letting y0 be the
induced fold of v, we have f(y0, v) ≥ f(y, 1v1) ≥ f(x,w) and so the zeros of
v must also be organized in a metric ball in y0. Moreover, in order for 1v1 to
achieve enough points it must be that Z(v) = Z(w). Write v = u0w where the 0
between u and w is located in the center of the metric ball according to the fold
y. Then the path from the initial 1 of 1v1 to the final 1 of 1v1 via the center 0 of
the ball must contain a factor that enters the metric ball, proceeds to its center,
and exits the metric ball. Thus, we must have u = u′0n and w = 0nw′ for some
words u′, w′. We conclude that v contains a factor of the form 02n+1.

We create some folds of 0∗ in the shape of a metric ball, and add whiskers,
replacing some edges 0→ 0 on the boundary by 0→ 1∗ → 0, in order to prevent
long sequences of 0s. For example, the fold on the left in (3) has whiskers.

We start from a closed loop configuration and let the arrow leaving the 0
indicated by 0a be moved from a “symmetric” position indicated by . . . to 0b.
See Figure 4, Figure 5 for the pairs Pn = (xn, wn), n ≤ 5.
2 This sum of I00 and f is discussed in the second paragraph of Section 2 by Berger and
Leighton, and on page 3 by Harper where he phrases it as: the Edge-Isoperimetric
Problem and the Induced Edge Problem are equivalent and we shall treat them as
interchangeable.
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2.1 2D rectangular lattice

Remark 1. While a metric ball Br optimizes the score for triangular folding,
that is not true for rectangular folding. Compare the ball B3 in Figure 6 (which
is a ball under the L1 metric) to the square (or L∞ ball) of the same size
52 = 1 + 4 + 8 + 12.

Theorem 11. For each n there exists a word wn and a fold P rect
n of wn in the

rectangular lattice such that the 0s of wn form a (2n+1)-square and wn contains
no subword 02n+1.

Proof. We construct a suitable fold P rect
n of a word starting with 0n+11 in a

square. See Figure 8 for an illustration of P rect
5 . For an illustration of P rect

2 ,
before and after adding whiskers, see Figure 7.

Now we use some classical results:

Theorem 12 ([3, Fact 3.1]). Among all sets of cardinality n3 in the rectan-
gular lattice, an n-cube strictly maximizes the number of internal edges.

Theorem 13. Among all sets of cardinality n2 in the rectangular lattice, an
n-square strictly maximizes the number of internal edges.

Proof. The proof is the same as that of Theorem 12.

Theorem 14. There are infinitely many counterexamples to the cul-de-sac con-
jecture in the rectangular lattice.

Proof. Let wn be as in Theorem 11. Assume for contradiction that Jrect(1wn1) =
Jrect(wn). Thus, there is a fold of 1wn1 achieving as many points as wn. This
fold must include a (2n+1)-square of 0s by Theorem 13. Since 1wn1 starts and
ends with 1s, the fold must start and end outside this (2n+ 1)-square. In order
to reach the 0 at the center of the (2n+1)-square and return outside the square,
the word wn must contain a factor 02n+1. However, by construction wn does not
contain such a factor.

2.2 3D rectangular lattice

A similar construction succeeds for the 3D rectangular lattice.

Theorem 15. For each n ∈ N there exists a word wn and a fold Pn of wn in
the 3D rectangular lattice such that the 0s of wn form an n-ball and wn contains
no subword 02n+1. Thereby wn is a counterexample to the cul-de-sac conjecture.

Proof. Using the 03-free length-54 word

(0011)12011100 = 00(1100)111101(1100)1

a suitable fold is shown in Figure 9.
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w1 = (001)30 x1 : 1

0 0

0b 0a 0

1 0 0 1

w2 = (0001)60 x2 : 1

1 0 0 0
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1 0 0 0 0

0 0 0 1

1
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Fig. 4: Folds that demonstrate nonmonotonicity in the triangular model.
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Fig. 5: The fold x5 in the triangular lattice of a word w5 having no occurrence
of 011.

3

3 2 3

3 2 1 2 3

3 2 1 0 1 2 3

3 2 1 2 3

3 2 3

3

(a) B3(L
1) has 25 vertices and 36 edges.

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

(b) B2(L
∞) has 25 vertices and 40 edges.

Fig. 6: An optimal configuration (b) in the 2D rectangular lattice that is not a
ball (a) in the graph metric. The edges shown are the edges in the symmetric
difference between the two graphs.

2.3 Berger-Leighton inspired method

We can also refute the cul-de-sac conjecture in an easier way. In Figure 10, the
central square is labeled with 0s throughout and the boundary of the square is
labeled with 1s. In any optimal fold, the 1s would have to be on the boundary
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P rect
2
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(a) Before whiskers.
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0
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1 // 0 // 0 0

OO

0oo 0

OO

1oo

1
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0oo 0oo 0oo 0 // 0 // 1

OO

1 // 0
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0 // 0
��

0

OO

0oo 1oo

0

��
0

OO

0

��
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OO

1 // 1
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(b) With whiskers.

Fig. 7: Folding to obtain nonmonotonicity in the 2D rectangular model.

and completely cover the boundary. Therefore, we have nonmonotonicity in the
form J(w) > J(w1) for the word w = 0160110((1100)2110)31100110.

3 NP-hardness result

Theorem 16. The set {(w, k) | Jcube(w) = k > Jcube(w1)} is NP-hard.

Proof. Recall the following decision problem from Berger and Leighton [3].
MODIFIED BIN PACKING

Instance: A finite set U of items, a size s(u) that is a positive even integer for
each u ∈ U , a positive integer bin capacity B, and a positive integer K, where∑
u∈U s(u) = BK.
Question: Is there a partition of U into disjoint sets U1, . . . , UK such that

the sum of the sizes of the items in each Ui is precisely B?
For each instance it is clear that B is even. Before proceeding with the con-

struction we replace K by K+1, i.e., add one more bin, and add one more item
u′ with the size s(u′) = B. When ordering the items we make sure that u′ is the
last in the sequence. Clearly, in any solution u′ would have to be assigned its
own bin, without loss of generality be taken to be the last one in the ordering
of bins used in Berger and Leighton’s construction. It is clear that this modified
instance has a solution if and only if the original instance has a solution.

The construction in Berger and Leighton completely covers the surface of
the cube with 1s. We can rotate the word so that the long factor of zeros (Hs)
is at the ends. That is, where Berger and Leighton’s word is of the form SB =
uH(n−2)3+2v, we consider instead HavuHb where a + b = (n − 2)3 + 2 and
a, b > 0.

As the location of the bins is determined by the instance, not by its solution,
and since we can add a spurious last item with size exactly the bin size B and
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Fig. 8: Folding to obtain nonmonotonicity in the 2D rectangular model.

put it in the last bin, we can control where we are at the end of folding SB
independently of the solution. Then we pad with P s (1s) and route the fold over
to Berger and Leighton’s starting node (n−2, n−1, n−1) to complete the loop.
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1 1 1 1 1 1

1 1 0 0 0 1 0 0 0 1 0 0 0 1

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

1 1 1 1 1 1

Fig. 9: Folding to obtain nonmonotonicity in the 3D rectangular model
for the word w = (0011)12011100. For a draggable view of the graphics
see https://math.hawaii.edu/~bjoern/?sheets=6&xs=17&ys=6&string=
001100110011001100110011001100110011001100110011011100&page=
labbyfold&moves=aasddsdwwdwaawasewdsddsassawaawdeasddsdwwdwaawasedsff.

https://math.hawaii.edu/~bjoern/?sheets=6&xs=17&ys=6&string=001100110011001100110011001100110011001100110011011100&page=labbyfold&moves=aasddsdwwdwaawasewdsddsassawaawdeasddsdwwdwaawasedsff
https://math.hawaii.edu/~bjoern/?sheets=6&xs=17&ys=6&string=001100110011001100110011001100110011001100110011011100&page=labbyfold&moves=aasddsdwwdwaawasewdsddsassawaawdeasddsdwwdwaawasedsff
https://math.hawaii.edu/~bjoern/?sheets=6&xs=17&ys=6&string=001100110011001100110011001100110011001100110011011100&page=labbyfold&moves=aasddsdwwdwaawasewdsddsassawaawdeasddsdwwdwaawasedsff
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Fig. 10: A Berger and Leighton inspired refutation of the cul-de-sac conjecture.



Nonmonotonicity of protein folding 15

4 Knots and links

We do not know whether knots are necessary for the optimal value function
Jcube. Wüst, Reith and Virnau [13] considered knotting in the HP model, but
only from a statistical point of view, hence they do not address whether knotting
is necessary for optimal folding.

Of course, an optimal closed fold can include any knot, simply by folding a
word of the form 1∗ in the shape of that knot. Here a closed fold is a walk in
the lattice that is self-avoiding except that the first and last vertices coincide.

Let us therefore say, given a knot K, that a proper K-fold of a word w is a
closed fold of w which looks like K (i.e., is ambiently isotopic to K) and such
that in a 2-dimensional knot diagram of the fold, the over-and-under vertices are
separated by points scored with respect to w.

Here is a diagram of the trefoil knot with over-and-under vertices indicated
by curving.

��

oo

))

��

))

OO

))

OO

OO

oo

It is immediate that only if K is the unknot can there be a proper K-fold of
a word of the form 1∗.
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Theorem 17. There exists a cyclic word w, a nontrivial knot K, and a proper
K-fold x of w such that x is an optimal fold of w.

Proof. Let w = 12(0417)2, a word of length 24, let K be the trefoil knot, and
let x be the fold shown below. As seen earlier, the central red cube (where red
is identified with 0 and blue with 1) guarantees an optimal fold.

https://math.hawaii.edu/~bjoern/?sheets=9&xs=17&ys=17
&string=1100001111111000011111111
&page=labbyfold&moves=eddfwwffssaeeweddffaaaes

It is clear that we can achieve a central packed cube of 0s with a minimal
length knot. The minimal length of a trefoil knot in the 3D integer lattice is
24 [9]. This was already achieved above for the word 17041904 and 6 points.
However, this is not uniquely optimal as we can fairly easily take the given
configuration of red monomers and add 7 and 9 blue monomers (using 8 and
10 edges) in a non-knotted manner. Thus, we know that a knot can appear in
a minimal-length, optimal-score, but not-uniquely-optimal-score, manner in the
3D HP model.

We have seen that knots do occur as optimal folds, even if we have not
established that they occur as uniquely optimal folds. For links the situation
is no easier. Consider the “polymer complex” consisting of two copies of (01)4.
Thus, we have two loops of length 8 labeled (01)4. If we link them so that 0s are
in the middle(s), we achieve 7 points:
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We can show by brute force search that links can be optimal, even if we can-
not show they are uniquely optimal. Behold examples for two copies of (01)4:

An optimal link. Below we have a 4-cube formed from two linked loops of length
8 and 64− 8 = 56, respectively. We can make every monomer a 0 (hydrophobic)
but it is more interesting to only make a certain 3-cube that way. Then the words
read are 08 and (starting from the linking point) 06120021202190214021205. It is
not hard to see that these two words can also form a 4-cube in an unlinked way,
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however.
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An optimal trefoil knot. Since the 0s form a 4 × 4 × 4 grid, the following is an
optimal fold of the length-70 cyclic word 1302213042 in the shape of a trefoil
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knot.
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Let us say that the hydrophobic core of a fold is the map sending locations in
the word to locations of the hydrophobic monomers, that is undefined on polar
monomers. Let us moreover say that an essential fold of the knot K is a fold
such that all folds with the same hydrophobic core are homotopic to K. Then
the above example shows that an essential fold of the trefoil knot 31 can be an
optimal fold of a word. We conjecture that this is true for all knots.
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