13a. Graph $1 - \sqrt{1-x}$.

Factor out the "−" under the radical (you can’t pull it outside of the radical) Rewrite it in the form $a\sqrt{b(x-c)} + d$.

$$\sqrt{_ (x-_)} + _$$

Start with the graph (1) of \sqrt{x} and apply the shifts and reflections needed to get the graph of $1 - \sqrt{1-x}$.

Graph 1 is given. Number the other graphs, 2, 3, 4, 5. 5 being the final answer.

The graph has an x-intercept. Be careful to get the x-intercept right (it is not a fraction).
13b. Given the graph of \(g(x) \), graph \(-1 + g(1 - x)\). First rewrite it in the form \(a\sqrt{b(x - c)} + d \).

\[
-1 + g(1 - x) = g(1 - x) - 1 = g(-x + 1) - 1 = g(-(x - 1)) - 1
\]

\[
g(x) \quad \rightarrow \quad g(-x) \quad \rightarrow \quad g(-(x - 1)) \quad \rightarrow \quad g(-(x + 1)) - 1
\]

<table>
<thead>
<tr>
<th>Graph number:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>hor. reflection</td>
<td>right 1</td>
<td>down 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start with the graph of \(g(x) \) which is given and apply the shifts and reflections needed to get the graph of \(-1 + g(-1 - x)\). Number the given graph (1) and number the other graphs, 2, 3, 4.