Recall. Difference of squares theorem. \(x^2 + kx = (x + \frac{k}{2})^2 - (\frac{k}{2})^2 \)

3a. \(y = 2(x + 4)^2 - 3 \). Rewrite in the perfect square form \(a(x - x_0)^2 + y_0 \). Hint, \(x_0, y_0 \) can be negative. Then find the vertex.

3b. \(y = 2x^2 + 8x + 3 \). Find the vertex, intercepts, graph.
 - Do the “horns” of the parabola point up \(\cup \) or down \(\cap \)?
 - Write in perfect square form. Leave the constant 3 outside. Factor the 2 out of \((2x^2 + 8x) \) then write as a difference of squares using the theorem above. If your equation looks like \(a(x + x_0)^2 - y_0 \), rewrite it in the perfect square form \(a(x - x_0)^2 + y_0 \). Note: “−” after \(x \), “+” before the constant.

- Find the vertex \((x_0, y_0)\). You must use “()”. E.g., vertex=\((3,4)\), not vertex = 3,4. 7 symbols.
- Find the \(x \)-intercepts. Set \(y = 0 \). \(2x^2 + 8x + 3 \) doesn’t factor, use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).
 - 7 or 8 symbols counting \(\pm \) as 1 symbol. chk=5 or 7 or 9. Write \(x \)-intercepts in the form \(x = 3 \), not \((3, 0) \).

- Find the \(y \)-intercept. Equation has 3 symbols. Write \(y \)-intercepts in the form \(y = 4 \), not \((0, 4) \).

- Draw the graph. Label the vertex on the graph with its coordinates.