11. θ is acute and $\tan \theta = 3/10$.
Label the sides of the triangle with numbers that represent the equation $\tan \theta = 3/10$.

Find the third side, $x =$

\[
\cos(-\theta) = \\
7 \text{ symb, chk}=11.
\]

\[
\sin(\theta + \pi) = \\
7 \text{ symb, chk}=13.
\]

\[
\cos(\pi - \theta) \\
8 \text{ symb, chk}=11.
\]

\[
\sin(-\theta) = -\sin(\theta) \quad \sin(\theta \pm n\pi) = \sin \theta \quad n \text{ even} \quad \sin(\theta \pm n\pi) = -\sin \theta \quad n \text{ odd} \\
\cos(-\theta) = \cos(\theta) \quad \cos(\theta \pm n\pi) = \cos \theta \quad n \text{ even} \quad \cos(\theta \pm n\pi) = -\cos \theta \quad n \text{ odd}
\]

14a. Rewrite $\sin\left(\frac{-22\pi}{7}\right)$ using a reference angle in $[0,\pi/2]$. Exact answer with \sin, π, no decimal answer. 6 or 8 symb, chk=7.
First take care of the minus sign ")-".

Find the nearest multiples of π above and below $\frac{22\pi}{7}$. Of these two multiples of π, circle the nearest one.

Rewrite $\frac{22\pi}{7}$ as the nearest multiple of π plus or minus an acute positive angle. This acute angle is the reference angle.

\[
\sin\left(\frac{-22\pi}{7}\right) = ?
\]

14b. Rewrite $\cos\left(\frac{18\pi}{7}\right)$ using a reference angle in $[0,\pi/2]$. Exact answer with \cos, π, no decimal answer. 8 or 10 symb, chk=10.