\[
\sin^2 x + \cos^2 x = 1 \quad \sin^2 x = 1 - \cos^2 x \quad \cos^2 x = 1 - \sin^2 x
\]

\[
\tan(0) = 0, \quad \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \tan\left(\frac{\pi}{4}\right) = 1, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3}
\]

9. Solve for \(\theta \). \(\sin^2 \theta + 2 \cos^2 \theta = 0 \)
Divide by everything by \(\cos^2 \theta \).
Rewrite in terms of \(\tan \theta \).

Solve for \(\theta \). (Write “no solutions” if there are none.)

10. Solve for \(x \). \(\sin^2 x + \cos x = 1 \) \quad Should be three sets of solutions.
Rewrite in terms of just \(\sin \) or just \(\cos \), not both.
Since \(\sin^2 x + \cos^2 x = 1 \), you can solve for \(\sin^2 \) in terms of \(\cos^2 \) or \(\cos^2 \) in terms of \(\sin^2 \) getting
\[
\sin^2 x = 1 - \cos^2 x \quad \text{and} \quad \cos^2 x = 1 - \sin^2 x
\]
Use one of these equations to rewrite the given equation above entirely in terms of \(\sin \) or entirely in terms of \(\cos \).

Now solve for \(x \).