How to hunt wild constants

David R. Stoutemyer
March 30, 2021

Abstract

There are now several comprehensive web applications, stand-alone computer
programs and computer algebra functions that, given a floating point number such
as 6.518670730718491, can return concise nonfloat constants such as 3arctan?2 +
In9+ 1 that closely approximate the float. Usefully often such a result is the exact
limit as the float is computed with increasing precision. Therefore these program
results are candidates for proving an exact result that you could not otherwise
compute or conjecture without the program. Moreover, candidates that are not
the exact limit can be provable bounds, or convey qualitative insight, or suggest
series that they truncate, or provide sufficiently close efficient approximations for
subsequent computation. This article describes some of these programs, how they
work, and how best to use each of them. Almost everyone who uses or should use
mathematical software can benefit from acquaintance with several such programs,
because these programs differ in the sets of constants that they can return.

1 Introduction
“...you are in a state of constant learning.”
— Bruce Lee

This article is about numerical mathematical constants that can be computed ap-
proximately.

For real-world problems, we often cannot directly derive exact closed-form results
even with the help of computer algebra, but we more often can compute approximate
floating-point results — hereinafter called floats. For some such cases there is an exact
closed-form result that the float approximates and that form is simple enough so that we
would like to know it, but we do not know how to derive it or to guess it as a prerequisite
to a proof. If we had one or a few plausible concise nonfloat candidates that agree
sufficiently closely with the float, then we could concentrate our efforts on attempting to
prove that one of these candidates is the exact result.

This article describes text and software tools that provide such guesses. Table 1 lists
several such tools in order of presentation, grouped by type. Figure 1 plots the initial

publication dates of these tools on a time line. All of the web-based and downloadable
tools are free, but some of them require Java, a C compiler, Maple or Mathematicalll

Table 1: Web apps, standalone apps, CAS functions, CAS apps, and books with tables

’ Type \ Name \Sec.\ Prerequisite \ http://www. or https://www. ‘
Book Robinson & Potter | [2.1 Library _escholarship.org/uc/item/2t95c¢0bp|
table Borwein & Borwein | 2.2 or | springer.com/gp/book /9781461585121 |
Steven Finch 2.2 buy sites.oxy.edu/lengyel /originals/0521818052ws.pdf
t.;)l()jli Shamo’s Catalog | |3 [18]
s::Zi(l:)h Google, etc. 4 i)r;lg;te_ Google.com, etc.
Web OEIS 5.1 or oeis.org
apps WolframAlpha 5.2 computer wolframalpha.com
ISC 5.3 wayback.cecm.sfu.ca/projects/ISC/ISCmain.html
Stand MESearch 6.1 Java xuru.org/mesearch /MESearch.asp 1
alone RIES 6.2/ | C compiler mrob.com /ries
In identify 7.1 Maple maplesoft.com /support /help/Maple /view.aspx| |
CAS | identify, findpoly |[7.2 SymPy docs.sympy.org/0.7.1/modules/mpmath /
CAS AskConstants 8.1 | Mathematica AskConstants.org]
apps | Plouffe’s Inverter | 8.2 Maple plouffe.fr /Simon%20Plouffe.htm
PSLQ| Custom IR model | |9 Ciof)trraélAs I, 2]

!But Mathematica is free and pre-installed on some Raspberry Pi computers that cost only a few

dollars.

http://escholarship.org/uc/item/2t95c0bp
http://springer.com/gp/book/9781461585121
http://sites.oxy.edu/lengyel/originals/0521818052ws.pdf
http://Google.com
http://oeis.org
http://wolframalpha.com
http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html
http://xuru.org/mesearch/MESearch.asp
http://mrob.com/ries
http://maplesoft.com/support/help/Maple/view.aspx
http://docs.sympy.org/0.7.1/modules/mpmath/
http://AskConstants.org
http://plouffe.fr/Simon%20Plouffe.htm

Figure 1: Text tables, applications, applications and functions for identifying float con-
stants

Wolfram|Alpha
Shamos's catalog

MPMath identify ()

—{Inverse Symbolic Calculator] M

Maple identify (

Barwein & Barwein

Robinson & Potter |—{Steven Finch]

==l

2000 2010 2020

AskConstants J

Float inputs for these tools often arise from computations such as numerical inte-
gration, iterative equation solving, approximate optimization, etc. The purposes of this
article are to explain how best to use these tools, to explain how they work, and to
explain how to decide if proposed candidates are promising or else probably impostors.

Section 8 discusses input magnitude limitations and Section 9 discusses some common
causes of impostor results, with conclusions in Section 10.

2 Text tables

2.1 Mathematical Constants table by Robinson & Potter

Here is an excerpt from a hand-typed table of about 3000 constants by Robinson and

Potter [15]:

4 22755 35333 76265 40809 | —1p(1/4) = v + 3In2 + 7/2
0 .22755 09577 68849 99385 4/(x%e)
0 .22756 34054 87472 14332 root of Tze® = 2

Notice that:

e Inverse to more common tables of constants, the inputs in the left column are
floats and the corresponding results in the right column are corresponding exact
constants.

e The digamma function of 1/4 was negated to make the float positive. Most such
tables do this sign aliasing, because it is easy to discard the sign of the float, then
negate the corresponding nonfloat result. This doubles the potential coverage of
the table.

e The inputs are sorted by the fractional parts of the absolute values of the input
floats rather than by those entire input floats. For a given float Z, you do a manual
search for the fractional part of |Z|, then decide whether or not the discrepancy with
the fractional part of either bracketing entry or entries slightly further away is small
enough to justify further consideration. This fractional-part aliasing makes the
table applicable to many more examples and is easily inverted mentally to construct
the true candidate. For example, we can also easily guess that a numerical result
5.22755 35334 might approach 1 — ¢(1/4) as the precision increases.

e The last entry in the above table is an implicit result. Since the popularization
of the Lambert W function [5], this exact result can now be expressed explicitly
as Wy (2/7), but the table contains solutions to other equations that cannot yet
be expressed explicitly, together with definite integrals, infinite series, and infinite
products having no known closed form.

To view a photocopy of the entire table, visit
https://escholarship.org/uc/item/2t95c0bp

Definition. Published constants are publicly accessible closed-form and/or approximate
float constants — either printed or on the web.

Definition. Named constants are constants having a widely-accepted name, such as
Catalan’s constant or the twin prime constant.

Definition. Wild constants are computed float constants for which you do not know an
exact closed form for the limit as the precision of the approaches infinity.

Definition. Tabulated constants are formed by systematically applying sets of functions
to systematic sets of arguments, Printed tables for approximate computation usually have
equally-spaced arguments that are terminating decimal fractions such as 1.001, 1.002,
1.003, etc. In contrast, to return nonfloat results such as arctan(2/3), the curated and
computer-generated tables described in this article often instead use the set of all reduced
fraction arguments whose numerator and denominator magnitudes do not exceed some
given integer — perhaps also multiplied by common irrational constants such as m, v/2,
ete.

Remark. The table by Robinson and Potter contains all of the above types.

https://escholarship.org/uc/item/2t95c0bp

2.2 Other extensive text tables

e Borwein and Borwein published a similar table of about 100,000 constants [3]. The
table contains mostly computer-generated tabulated constants and some dimen-
sionless physical constants.

e The award-winning book by Steven Finch [9] has not only a table of about 10,000
well chosen non-tabulated constants, but it and Volume II ([I0]) contain short
essays about those constants, with references to the literature about them.

3 .pdf and .html tables

Michael Shamos posted a .pdf file of a table of about 10,000 constants at http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=repl&type=pdf
Most of these constants are isolated pairs of a float value and a closed form defined by a
definite integral, infinite series, or infinite product. Many floats list several corresponding
formulas, such as various integrals, series and products that have the same value, which
is helpful by suggesting other perhaps more efficient ways to compute more digits.

A web search for “Mathematical constants” can locate other such downloadable
tables or .html tables that can be searched directly on the web.

4 Web browsers

Web browser search engines are helpful for finding candidate nonfloats for particular float
inputs.
Here are some tips for using the Google Search Engine for this purposd?

1. It seems better to use decimal fraction notation than scientific notation.
2. For negative numbers, try both the negative entry and its absolute value.

3. For numbers having magnitude less than 1, try both with and without a leading 0
digit before the decimal point.

4. Some publications have truncated the exact value and some have rounded it, so try
both.

5. Most published constants have 16 or fewer significant digits, because most are com-
puted with 16-digit significands or less, and the author of the published float might
have further rounded or truncated the computed result to allow for computational
errors or typesetting constraints.

6. Your entry must often have exactly the same digits as a publication — no more and
no fewer.

2The Microsoft Edge and Apple Safari browsers currently allows a choice of Google, Bing, Yahoo or
DuckDuckGo as a search engine .

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf

7. Many relevant publications tend to have exactly 11 digits, including a leading zero
before the decimal point if the magnitude is less than 1, because they were taken
directly or indirectly from the table in Steven Finch’s book described in subsection
2.2

8. As you decrease the number of digits down to a few, the number of browser results
tends to increase, but so does the number of results that are nearby mathematical
constants or are not mathematical constants.

9. Thus one strategy is to use up to the first 17 digits of your decimal float (using a
sign if negative and a leading 0 digit for magnitudes < 1), then repeatedly truncate
successive digits (and also try rounding where it is different), until you obtain at
least one promising result on the first page or two of the resultsf| Then if those
results include a name or other helpful clues (such as “Artin’s constant”), branch
into a search using that clue. At each digit length you can optionally experiment
with omitting a leading minus sign and or 0 digit.

e If there is more than one plausible result and the associated texts do not indicate
equivalence, then repeat the search starting with more digits if you can compute
them.

e Somewhat different tips might be appropriate for other search engines, and Google’s
search algorithm might evolve to make some of the tips here unnecessary. To learn,
experiment with float approximations to a few known mathematical constants are
not too obscure or too well known.

5 Free web applications

If you have internet access as you read this, then you might want to try each of the
applications in this section as you read the subsections. With good eyesight, most of
them are usable even with most smart phones.

To become acquainted with them, using simple then less simple nonfloat constants
from books and articles, try entering their floating-point approximations of varying pre-
cisions. Also try random floats having differing numbers of significant digits. As the
number of significant digits increases, random floats are decreasingly likely to be the
truncated or rounded value of any nonfloat expression simple enough for any of these
programs to guess in a reasonable amount of time. An application is generous if it often
suggests expressions for such random-number entries, versus parsimonious if it rarely
does. It is alright for an application to be generous, but it is important for you to re-
alize it. Generosity can be helpful for determining bounds, efficient sufficiently accurate
approximations or for suggesting the dominant terms of a longer exact result.

Every float is exactly representable as an easily computed rational number, but floats
cannot represent all rational numbers and floats are often approximations to irrational

3Beware that, for example, rounding 1.546 to 1.56, then subsequently rounding that to 1.6 is different
than round 1.546 directly to 1.5.

numbers. If your float approaches a limit as the working precision of the calculation
approaches infinity and that limit is expressible as a nonfloat expression, then that limit
is what you want. Perfect agreement with a mere approximation prevents that
desired result.

5.1 The On-line Encyclopedia of Integer Sequences

One of the main purposes of the OEIS site at https://oeis.org/ is to identify integer
sequences such as proposing that the truncated sequence 8, 16, 32, 64, . . . might be a
subsequence of the sequence whose nth element is 2. Another goal of this database is
to provide accurate and comprehensive information about these sequences.

The successive digits of a decimal fraction can be regarded as an integer sequence,
and an under-advertised capability of OEIS is to propose nonfloat constant expressions
that closely approximate your float. OEIS has sequences of up through about 100 digits
or more for about 10,000 constants regarded as important by the many contributors who
posted them. To attempt identifying nonfloat candidates for your float, you can enter a
comma-separated list of some leading digits of the absolute value of its decimal fraction
value, such as 3, 1, 4, 1, 5, 9, 2, 6 . Ignoring any leading 0 digits, OEIS then attempts
to match your other entered successive digits with any subsequence of its sequences. It
then lists information about each of its integer sequences that contain your sequence as a
subsequence. However, it is better to enter your float digits as a positive decimal fraction
with a decimal point, such as 3.1415926. (Do not use scientific notation.)

Any matched table entries can contain hyperlinks to references and contain computer-
algebra program fragments to compute the constant to any number of digits efficiently.
There is also usually a Keyword link labeled “cons” that leads to the precomputed value
of the constant up to a median of about 100 significant digits.

This exact-match radix search requires you to truncate trailing digits of the absolute
value of your float rather than round. However, the hardware or software that computed
your float is approximate and almost certainly used rounding rather than truncation.
Therefore you should discard enough of your trailing digits to be reasonably confident
that your submission matches exactly the leading digits at OEIS.

If your computed float ends with a sequence of digits 9, then also try what you get by
adding 1 to the last digit. If your computed float ends with a sequence of digits 0, then
also try what you get by subtracting 1 from the last digit, because those small relative
changes to your approximate float can dramatically alter the digit sequence.

If you enter too few digits then you will obtain numerous matches, most or all of which
are irrelevant. However, with about 10° numbers in the data base, entering 8 or more
significant digits is usually sufficient to achieve at most one match, and almost all of the
OEIS sequences for floats contain at least that many digits. Therefore you can usually
truncate to about 8 significant digits without much chance of false matches, which might
be revealed by comparison with your truncated digits.

Since OEIS ignores the position of the decimal point, entering 31.41592 returns w
rather than 107. It is your responsibility to notice this and multiply the proposed exact
constant by the appropriate power of 10. This base-ten significand aliasing increases
the number of floats that can be matched.

Since OEIS can match any subsequence of their digit sequences, you can also exploit
fractional part aliasing by entering only the fractional part of the absolute value of your
float. For example, if your truncated mystery float is 9.141592654, then entering it
produces no result, whereas entering 0.141592654 produces m and gives its float value,
enabling you to recognize that your mystery float is probably 6 + 7. Thus it is worth
trying all of your float, then only its integer part if different.

Beware that fractional part aliasing suffers catastrophic cancellation when the ab-
solute value of the fractional part is small compared to the absolute value of the float,
whereas significand aliasing suffers no loss of precision. Therefore it is best if 8 or more
significant digits remain after omitting the integer part and truncating dubious trailing
digits.

Other than you exploiting these types of aliasing, OEIS makes no effort to identify
more general transformations of its constants, such as 2/3 of a named constant or 2/3
plus a named constant.

All OEIS integer sequences and float digit sequences are assigned an OEIS name
consisting of the letter “A” followed by six digits. Although such names are difficult
to remember and do not acknowledge the discoverers, they are unique and serve as a de
facto standard — particularly when there is no other widely recognized name. In contrast,
traditional names can have various spellings, subsets, and orderings of all the discoverers,
as well as values differing by a factor of 2, etc, on account of one author using a radius
where another uses a diameter, for example.

A complimentary way to use OEIS for named constants is to enter a name, such as
donkey, grazing goat, or A075838. If successful, you will find the same information as
for entering the truncated float value 0.952847864 .

Brief sorted descriptions of all the constants together with links to their pages are at

https://oeis.org/wiki/Index_to_constants#Description

Some of these constants are tabulated, but most are isolated published constants,
drawn from many areas by many contributors.

Even if another tool returns a plausible result, OEIS and Steven Finch’s books are
good starting points for learning more about an OEIS constant in your result.

As a training example, try to compute

1
o (coth(mz) + 1) (235 In <x2 + Zl) -2 arctan(?x))

/ 4% + 1 de
0

symbolically and numerically, then enter the latter at https://oeis.org/ ., truncated
to about 8 digits

5.2 WolframAlpha

If you enter a float into WolframAlpha at https://www.wolframalpha.com/, then the
results usually include up to three guesses for a nonfloat constant that the float approx-
imates.

https://oeis.org/wiki/Index_to_constants#Description
https://oeis.org/
https://www.wolframalpha.com/

A way to test the tools described in this article is to approximate a nonfloat constant
to a generous number of significant digits, then see how many of those digits are necessary
to produce an equivalent expression, if any. Accordingly, I approximated 1+3/(1++v/3+7)
to 18 digits, then tried entering that and successively fewer digits into Alpha. Table
lists the results for floats rounded to 10 and to 11 significant digits, together with entries
having the 11 correct digits followed by one and two intentionally incorrect digits. The
underlined digits in the entries differ from the exact expression by at most 0.5 units in
the last place.

3v3
Table 2: WolframAlpha test for identifying 1 — —\/_ from a float approximation
1+V3+m
’ Entry \digits\ Result (Agrees with input to 0.5 in last bold digit) \E‘
_ 2
W= Tm 2T 0.11534425649366
(21 4+)

0.1153442566 10]

root of x4 — 7522 + 10z — 99 near x = 8.6697
~ 0.11534425656239

root of 992* — 102> 4+ 7522 — 1 near x = 0.115344
~ 0.11534425656239

1- 2\/§ +
0.11534425658 | 11 1+vV347
—9¢el + 124 — 35¢ + 5e?

136e

root of 92x* + 4923 — 2722 + 37x — 4 near x = 0.115344
~ 0.1153442565821563

~ 0.115344256584835 v

~ 0.115344256579706

1-2V3+n7

1+V3+m

2(1505 — 1)

0.115344256580 | 12 5(605 + 73)
where og is Somos’s quadratic recurrence constant

7 (root of 100z* — 15223 — 22 — 27z + 1 near x = 0.0367)

~ 0.1153442565828298

~ 0.1153442565814835 v

~ 0.1153442565818196

f;;;(?g; ~ 0.1153442565800221712
0.1153442565800| 13 5
3eel 4+ 295 — 86e — 9e
oi ~ 0.15344256579947
e

1
p (4C 4 30 — 11w — 407 log(2) + 277 log(3))
0.115344256580078601, where C' is Catalan’s constant

Notice that:

1. Alpha proposed an equivalent expression for 11 and 12 correct significant digits,
but not for 10.

2. Too many units of discrepancy in the last decimal place can mislead the algorithm
into trying to fit those incorrect digits.

3. The returned candidates are usually nonequivalent.

4. Alpha almost always finds expressions that differ from your input by at most a
few units in the last place that you entered. Therefore those differences alone are
usually not good criteria for favoring one alternative over the others.

Alpha mostly uses the PSLQ integer relation algorithmﬁ [7, 8]: Given a basis vector
¢ = [cq1, ¢a,...] of nonzero symbolic and/or float constants, the algorithm returns either
an indication of failure or a minimal 2-norm vector of integers [ny,ns,...] not all 0 such
that the inner product nyc; + nocs + -+ ~ 0.0 and ged(ny,ns,...) = 1.

1. The most straightforward way to exploit this algorithm is to make ¢; be the given
float # and choose commonly occurring nonfloat constants such as 1, 7, v/2, and
In2 as the other constants. If the algorithm returns a vector [ny,ns,...] , then a
close-fitting candidate is the rational linear combination

The last entry in Table [2| is of this type.
2. Another way to exploit this algorithm is if
(nycy +naco + + -) T+ (nger, + nga1crrr + -+) = 0.0,
then

n1C] + NaCay + - - -
NECr + N4 1Ch41 + -

T~ —

This linear fractional category of model was used for the correct identifications and
some of the incorrect ones in Table 2

3. Another way to exploit this algorithm is if ny + 1% + -+ 4+ 11 7™ =~ 0.0, then
T is approximately one of the zeros of the polynomial n; + nex + - -+ + ny 2™,
This can be tried for m = 1,2, ... up to some maximum degree that increases with
the number of significant digits. If PSLQ returns a vector of integers, then an
approximate polynomial zero algorithm can then be used to determine which zero
is closest to the given float. Several entries in Table [2 report such algebraic number
candidates.

4The LLL algorithm can also be used for this purpose.

10

4. For a power product model of the form & ~ b7'05*--- with given positive non-
float base constants b, and unknown rational exponents rg, if nyInZ + nsIlnb; +
nzlnby --- >~ 0.0, then

Inb Inb —ng/n13—n3/n
iﬁexp(—n2n1+n3n2+):bl 2/11)2 a/m
ny

The irrational factors of an irrational exponent can be considered part of the base
T2
to make this category fit a model such as 7 ~ 21372V5¢rs™ — 9n1 (3\/5> (e™)™ .

5. For a model of the form f(...), where f is invertible with respect to at least one of
its arguments and that argument model is one of the above types or recursively of
this functional type:

e Using predetermined constants for any other arguments, apply an inverse of
f to the given float T giving v.

e If the argument model is successfully fit to g, giving a nonfloat candidate
constant y, then return f(y).

The computing time grows rapidly with the number of elements m in the basis vector and
the number of words in the float significands. Moreover, the PSLQ algorithm can require
the input float to have mn significant digits of precision to return a correct m component
vector having integer components of up through n digits even if many of these integer
coefficients have much smaller magnitudes, including 0. Therefore, although specialized
efforts to identify particular floats have used thousands of digits and hundreds of vector
components, the general-purpose programs described here use mostly basis vectors having
< 8 elements.

Adyvise for using Alpha to identify floats:

1. If you enter 18 or more significant digits, including any trailing 0 digits, then Alpha
uses arbitrary precision rather than 16-digit machine floats. Arbitrary-precision
floats are slower but more than 18 digits are necessary for PSLQ to determine
many published constants.

2. Alternatively, you can append a suffix of the form ‘n to the significand of your
input to indicate that your best guess for the Precision is the value of n, which can
be a decimal fraction. For example, if your input for the example in Table [2| was
computed by a iterative equation solving using 16-digit IEEE binary64 hardware
and you guess that most probably about 14 digits are correctly rounded, then you
could start by entering 0.1153442565814834°14 . This has the advantage that you
can enter all of the computed digits, which which are more likely to be correct than
the value rounded or truncated to 14 digits, but without having Alpha assume that
all but perhaps the last one are correct. In the other direction, if your computed
16-digit machine float is 0.1615000000000000 and you are confident that all are
correct, then you can enter it more concisely as 0.1615°16 . The ““’ character is
near the upper left corner on many keyboards.

11

3. Software does not always display all of the digits in its significands, and internet
browsers paste into web applications such as Alpha only the characters that you
highlight when copying. For example, Mathematica displays by default only 6 of
the approximately 16 significant digits in the widespread IEEE binary64 machine
floats, and displays none of the 8 or more stored guard digits in arbitrary-precision
floats. Often some of those hardware or guard digits are correct and therefore
helpful to try entering. Therefore, learn how to display all of the digits in your
software’s floats [’

4. Unless you are an exceptionally fast accurate typist, highlight then copy the float
rather than type it.

5. Then round to as many of all those computed digits as you think have an absolute
error of most nearly 1/2 unit in the last place: Cancellation and rounding errors
often lose one or more digits of precision. Discretization errors such as from quadra-
ture often lose more, and each of these causes can lose all of the digits. Interval
arithmetic can provide an upper bound on cancellation and rounding errors, but not
necessarily on discretization errors. Significance arithmetic such as Mathematica’s
arbitrary-precision arithmetic provides cancellation and rounding error estimates
that are occasionally underestimates but more frequently overestimates.

6. Try rounding to successively fewer and more of the digits that you computed.

7. Compared to impostors, promising candidates often exhibit the property of per-
sisting throughout a larger range of rounding or truncation levels up through and
perhaps slightly beyond their correct digits.

8. PSLQ overfits often contain many digits in their rational numbers. Several terms
containing only simple rational numbers is less suspicious than one term having a
complicated rational number. Information theory suggests that candidates hav-
ing nearly as many or more total digits than the float input are partic-
ularly dubious.

5.3 Inverse Symbolic Calculator

Inverse Symbolic Calculator (ISC) implemented by Simon Plouffe working with Jonathon
and Peter Borwein and others is currently hosted at

http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html .
Plouffe [12] describes its origins.

ISC provides four different techniques to apply to the float that you enter:

®One way to do this in Mathematica is to copy all of the displayed digits then paste into a notebook,
then copy all of that fully-displayed float. Another way is to copy the result of InputForm [float].

12

http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html

5.3.1 Simple Lookup and Browser

This technique searches a precomputed table of sorted truncated 16-digit base-ten sig-
nificands of the absolute values of the floats, each paired with a corresponding nonfloat
constant [

That table has about 30 million pairs that are a mixture of published and tabulated
constants. The sorted significands and the corresponding nonfloats are subdivided into
about 9000 files whose names include some leading digits of all the significands in that file,
with each file containing all of the significands with those leading digits. The search begins
with a binary search on the file names in RAM, followed by a search in the appropriate
file to perfectly match or bracket the significand of the float that you entered, followed
by retrieval of close neighbors of those entries. Here are some input tips:

ISC Simple Lookup defines a match as all of the entered digits of the significand
being identical to that leading portion of a tabulated significand, but ignoring
any entered digits beyond 16.

The last one or more digits of your computed float are often not the correctly
truncated ones. To maximize your chance of success, try to compute as many
digits as is practical to be reasonably confident that the first 16 digits are correctly
truncated, then enter those 16 digits. Your float was probably computed with
software that rounds rather than truncates, so at least truncate the last computed
digit.

If you cannot compute more than 16 digits, then truncate to as many as your best
guess for how many are correctly truncated digits of the limit you seek.

If the most significant truncated digit is a 9, then also try truncating what you get
by adding 1 to that 9 digit. If the most significant truncated digit is a 0, then also
try truncating what you get by subtracting 1 from that 0 digit. Those minimal
relative changes to your entered float can dramatically alter the digit sequence.

You can enter as few as 5 significant digits, but with about 30 million entries having
significands 0.1000000000000000 through 0.9999999999999999, the mean distance

between table significands is

0.9999999999999999 — 0.1000000000000000 _s
~ 3.3 x107°.
30 x 106

Thus the expected number of matches for 5 entered significant digits is about 1000.
It is burdensome to assess more that a few matches even if they contain the limit
you seek; and they often do not, because a known closed form does not exist or it
is not in the tables or you have exceeded the ISC bound on the number of matches.

You are offered the opportunity to browse nearby table entries even if there are no
matches. Doing so might reveal one or more candidate nonfloats that agree closely
and are plausible considering your knowledge of the problem domain.

6Mentally truncating fractional digits correctly is easier than mentally rounding them correctly.

13

e The table contains many instances of nonfloats that all have the same 16-digit
significand value. The corresponding nonfloats are often equivalent to each other
within a factor that is a power of 10. Approximating the nonfloats to higher
precision can reveal nonequivalence.

e If you do not obtain at least one promising result, then try also entering fewer and
more truncated digits covering what you guess spans most of the possible actual
correctly truncated digits of your mystery float.

As a test example, the correctly truncated 16-digit value of

2
— 10\/§ (8\/5 — 9) = —5.123557917376186 .

(1)

Table 3| summarizes the results of entering various further truncated and rounded leading
digits to expose the consequences of rounding rather than truncating — and of appending
incorrectly truncated digits beyond the sixteenth.

Table 3: ISC Simple Lookup test results for approximated

—10

Do

(3v3-9)

?
Input digits Treatment Result !
5.1235 5 truncated | 38 matches include 12'/4/1/8 + 93/4 rr?a(m)rcl)y
360 matches. Too
51236 rounded They don’t include 121/4/4/8 + 93/4 | many
5.123557 . truncated Matches only 12/4/+/8 4 93/4 v+
6 matches that do not All
5123558 rounded include nearby 121/4/4/8 4 93/4 bad
5.1235579173 truncated Matches only 12/4/+/8 4 93/4 v+
1 No match, but browser lists adjacent
5.1235579174 rounded 12Y/4/,/3 4 997, matching 10 digits v
incorrect | No match, but browser lists adjacent
512355791730 12 last digit | 12/4/4/8 4 93/4, matching 10 digits v
5.12355791737618 15 truncated Matches only 12/4/+/8 + 93/4 v+
No match, but browser lists adjacent
5.12355791737619 rounded 121/4/\/8 T 977, matching 14 digits v
5.1235579173761861 incorrect Matches only 121/4/1/8 + 9%/ v
17 | last digit
5.1235579173761869 MOOTTECt | \fatches only 121/4/v/8 9771 Vot
last digit

For each match, ISC lists the truncated 16-digit base-10 significand (without a decimal
point) equated to a corresponding nonfloat, such as

14

512355791737618 = 12~(1/4) / (8 + 9~(3/4)) " (1/2) .

To process this match:

1.

The ratio of your input 5.123557917376186 to the significand 0.5123557917376186
is 10, so multiply the candidate nonfloat by 10 to de-alias the significand.

. Then negate that, because our float of interest in equation is negative and we

necessarily entered the negative of that value, giving our final result

121/4
10— 2)
V84 93/4

For verification, we should approximate expression to slightly more than 16
significant digits, then truncate to 16 digits, giving -5.123557917376186, which
agrees with the left side of equation (5.3.1)) to 15 digits.

Beware that the table was assembled over many years from many computed and printed
sources that used varying syntactic conventions. For example:

Gam, Gamma, GAM and GAMMA all denote the Gamma function, whereas
gamma denotes the Euler-Mascheroni constant.

sqrt and sr both denote /.

A polynomial in x or root (a_ polynomial in x) denotes the zero of that minimal
polynomial nearest the given float.

Non-real expressions often implicitly denote the real parts of those expressions.

As with our regrettably ambiguous traditional mathematics notation, For example,
sometimes 16°3/4 means 16" (3/4) rather than (16°3)/4, sin e+ 3 means sin(e + 3)
rather than sin(e) + 3, and 7/37 means 7/(3m) rather than (7/3)w, etc.

Step 3 above enables you to verify or refute your interpretation of
the ambiguous nonfloat syntax, then try another interpretation if
necessary.

Many nonfloats in the table contain either a common name constant such as Bernstein or
a red OEIS web link labeled with an OEIS constant having a name of the form “A” with
a six-digit suffix. Either way, you can search for their definitions at https://oeis.org/,
as described in subsection [5.11

15

https://oeis.org/

5.3.2 Smart Lookup

This technique uses the same lookup table about 100 times, but precedes each lookup with
a transformation of your float. For example, smart lookup might add 3/7 or multiply by
3/7 or apply In(...). For a given number of input digits, the average number of matches
is about 100 times as many as for simple lookup, and some transformations lose precision.
Therefore smart lookup requires you to enter at least 10 digits, and the transformation of
your input is done using 26-digit significands. Thus it is beneficial to enter floats having
up through 26 correctly rounded digits even though the forward table floats have only
16-digit significands.

For each match found, ISC lists the transformation that it used, with K representing
your float input, followed by the transformed float significand, the number of leading
digits that are identical to the matching table entry, and the number of matches for that
transformation. For example, computed to 26 significant digits,

1 1214
— — — 10 ————= ~ —5.3735579173761866715453232 . 3
4 8 + 93/ @)
Applying simple lookup to the absolute value of this float truncated to 16 digits
returns no match, and the ISC browser lists no result that agrees to more than 5 digits.
However, applying smart lookup to the absolute value of the right side of equation ({3,
computed with arithmetic that rounds, returns the table

’ Function ‘ Result ‘ Precision ‘ Matches ‘
| K—1/4 | 5.1235579173761866715453232 | 16 | 1 |

In the Function entry, K—1/4, K represents your input 5.3735579173761866715453232.
The different Result entry is the corresponding value of the formula in the Function entry,
as computed with 26-digit significands.

If you click on the Function entry K —1/4, then ISC shows the result of doing simple
lookup with the truncated significand of the transformed Result float, which gives

121/4
V8 + 93/4

together with an opportunity to browse around it.

If you want to further investigate one of these nonfloats that have acceptable agree-
ment, then, for example, you should

(4)

1. Numerically approximate the nonfloat, preferably to at least 16 digits or slightly
more, giving

K :121/4/\/ 8 + 93/4 ~ (0.512355791737618667 .

2. From that value and the value in the Result entry, determine a power of 10 by
which to multiply the nonfloat:

5.1235579173761866715453232
0.512355791737618667

= 10.0000000000000000,

16

giving
121/4
V8 4 93/4

3. Solve y = K — 1/4 for K, giving K =y + 1/4, giving

10

1 121/4

e[| —
i V8 + 93/4

4. Negate this result giving the nonfloat candidate for our float of interest

K =

1 124/4
|-+ 10— .
(4 v8+4ﬁﬂ)
More generally there might be several rows for several different transformations that
resulted in matches. Click on each of the Function entries to see the corresponding

nonfloats and optionally browse neighbors.
For this example, entering fewer than 16 digits produced no smart lookup result.

5.3.3 ISC Integer relation Algorithms

ISC provides an Integer Relation alternative that is worth trying too. It requires inputs of
16 through 32 significant digits, and it checks for algebraic numbers through fifth degree
and for rational linear combinations of the basis vectors

e, B (1), W (1), 1],
[V3m,In3,In2,v,v27]
[Wz, Catalan, 71n 2, /272, (In 2)2} ’
[73,¢ (3), 7 In2, (In2)3, /373, v/27%] .

These basis vectors might seem rather specialized. However, a noticeable portion of
wild constants in the printed tables of Section [2] are representable with a subset of at
least one of these vectors or with algebraic numbers of degree < 5.

It is wise to compute as many digits as you can up through 32. There is no need to
truncate, and it is OK for a few of the last digits to be incorrectly rounded.

5.3.4 Generalized Expansions

You must enter at least 16 significant digits for this option, and it is most appropriate to
round your approximate float to where you are reasonably confident that the last digit
is correctly rounded.

This option computes a truncated continued fraction from your input float, and com-
putes similar truncated infinite representations such as a truncated infinite product and
a truncated Egyptian fraction. This can be helpful because these alternatives might
suggest patterns that might be useful for computing the float to arbitrarily many digits
more efficiently than the method you used. Moreover, the GFUN package [17] is then

17

applied to these truncated representations to try guessing a generating function for the
infinite representation. (It is for you to prove that it is a generating function.)

Also, you can copy the comma-separated sequence of integers for one of these repre-
sentations, then paste it at https://oeis.org/ to attempt learning more about it, possibly
including a closed form. This is most likely to be successful for the continued-fraction
representation. A relevant OEIS hint for the sequence 1, 1, 2, 4, 9, 21, 51, 127 is

“Enter about 6 terms, starting with the second term. Leave off the first term
or two, because people may disagree about where the sequence begins. Don’t
enter too many terms, because you may have more terms than are in the

OEIS data base.

Generalized Expansions and two related tools GCF.TXT by Dougherty-Bliss and Zeil-
berger and [6] and the Ramanujan Machine by a team of nine authors [14] are intriguing,
but adjacent to the topic of this article, so they are not described further here.

5.4 Inverse Symbolic Calculator Plus

Inverse Symbolic Calculator Plus at https://isc.carma.newcastle.edu.au/ was a different
interface to essentially the same tables and integer-relations models as ISC, ISC+ has
had the message “down for maintenance indefinitely” from late 2018 through at least
March 2021. However, there is currently a link there titled “The original ISC” that links
to the ISC site already discussed in subsection

6 Freely downloadable standalone applications

The implemented integer relation models and precomputed table-lookup entries are based
on their implementer’s perception of what patterns of nonfloat constant expressions are
most likely to fit the combined needs of the intended users. There is a consequent effi-
ciency to the extent that the implementer’s choices are appropriate for you. However,
such an implementation is almost certain to miss some very concise results fitting unim-
plemented patterns.

The MESearch and RIES programs address this issue by trying all possible expres-
sions composed of selected rational numbers, symbolic constants, operators and functions
— up to a certain total complexity, time limit or memory limit. Both programs use bidi-
rectional search: The forward table is like the ISC table, and the backward table is
like the ISC Smart Lookup transformations. However, rather than using precomputed
forward and transformation tables, for each given float both applications build new ta-
bles from your selected components in a breadth-first way, interleaving the searching
with this table building. The forward table begins with a selected set simple rational
numbers and named constants together with a set of arithmetic operators and functions.
More complicated forward expressions are formed by applying all chosen functions and
operators to existing entries in an order such that the predicted expression complexity
grows approximately monotonically. The backward table starts with the given float, and
applies the selected functions in an order such that the estimated resulting complexity

18

also grows approximately monotonically. For functions and operators of more than one
operand, all but one of the operands can be taken from the current forward table.

Growth alternates between the forward and backward tables so that at any one time
they have roughly the same number of entries.

Even though the initial set of rational numbers is typically quite simple, arithmetic
combinations of rational subexpressions can lead to larger numerators and /or denomina-
tor magnitudes.

Both programs use only hardware floating point but do a good job of making the best
of that limitation.

Both programs use a few simplification rules such as employing 0 and 1 identities,
doing rational arithmetic, and canceling composition of a function with its inverse. How-
ever, neither program uses a computer algebra system, so sometimes the results can be
usefully simplified manually or by computer algebra.

Computation ceases at a preset expression complexity limit, memory limit, time limit,
or the limit of your patience when you finally interrupt a search. Both programs initially
use RAM for the tables, but can resort to a much slower secondary-storage mode when
allocated RAM is exhausted.

The fact that the tables are exhaustively built and searched in approximate order
of increasing expression complexity has a benefit that simple candidates composed of
the selected components are almost always quickly found. However, the open-ended
exponential growth of the table sizes and computing time with expression complexity
makes it impractical to generate expressions having complexity that is easily achievable
by specific integer relation models with sufficiently large-precision inputs. With a medium
sized set of selected components, exhaustive search can require overnight to generate an
expression containing about 11 or 12 instances of rational numbers, symbolic constants,
arithmetic operators, and function invocations.

But the peace of mind knowing that the search was exhaustive for expressions com-
posed of the selected rational numbers, symbolic constants, operators and functions is
worth the wait.

In contrast, the other software discussed in this article have a fixed number of ta-
ble entries and/or integer relation models, and the latter can accommodate expressions
having any number of predetermined symbolic constants, with arbitrarily large integers
determined by PSLQ. But being non-exhaustive, they can and do miss some very simple
results that MESearch and/or RIES can determine.

Ignoring the fact that applying some of the transformations to the given float might
produce unusable underflow overflow, or non-real results, if the backward table has m
entries and the forward table has n entries, then the number of potentially recognizable
expressions is mn. If both kinds of table entries averaged the same memory space, then
for a given amount of memory, mn is maximized by having m = n. For example to
recognize 10'? expressions, it suffices to have only 10° entries in the forward table and
10% entries in the backward table.

6.1 MESearch

MESearch is implemented in Java and freely downloadable from

19

http://www.xuru.org/mesearch/MESearch.asp.

The Java Runtime Environment is freely downloadable from https://www.java.
com/en/download/, and that is often already installed on most computers.

MESearch uses only invertible functions for its backward table, and automatically
applies those inverses to the nonfloats in the forward table whose float values closely
match the transformed float input.

Figure [2| shows the MESearch input panel for the float input

~0.1 4489,
garccoh (5)/2 4 /5 0.185793060600448 (5)

MESearch measures expression complexity by Length, defined as the number of
occurrences of rational numbers, named constants, functions and operators. MESearch
offers a choice of operators, functions, named constants, natural numbers and rational
numbers from which to build expressions, and Figure [2| shows my most common choices
for these. Choosing only a few components permits you to search to longer expressions
before exhausting memory or your patience, but it is important to include components
that you expect have a nonnegligible probability of occurring in your problem domain.
Functions and operators with more than one argument are particularly costly, and that
is why I often initially avoid selecting such special functions and statistics distributions.
Memory and computing time also grow quickly with the cardinality of the initial set of
named constants, natural numbers, and rational numbers. That is why I often initially
select only 7 and e together with very simple natural numbers and fractions.

20

http://www.xuru.org/mesearch/MESearch.asp
https://www.java.com/en/download/
https://www.java.com/en/download/

Figure 2: Input panel for an MESearch example

@ MESearch 2.0 - Mathematical Expression Searcher
File View Search Language Help
B (R > = |@

Target constant: |0.1857930606004482

Tolerance: 0.000000000001
Search Lype TerminaLion condilions
() Unidirectional Lenath larger than: 9
(@) Bidirectional [Likelihoed smaller thar: |g,01

Likelihood calculation interval ratlo: | 100

B[4 | Functions
m

Estimate of the required number of evaluations: 3.94e+08
Estimate of the required time: 9,94 minutes

Estimate of the maximum expression length to be explored: @

WARNING: Some of the functions selected have domain restrictions in bidire

Arithmictic

Algebraic

Elementary

I rigonometric

Hyperbaolic

Special

----- Gamma: Gammal(x)

----- LogGamma: LogGammalx)

----- Psi: Psi(x)

----- [GammaRegularized: GammaRegularized(x, y)
----- [Beta: Beta(x, v)

----- [[] Betaregularized: BetaRagularizad(x, v, =)
----- Ei: Ei(x)

-----] AGM: AGM(x, v)

Zeta: Zeta(x)

..... Wp: Wp(x)

----- Wm: Wm(x)

----- Erf: Erf{x)

-] Statistical

B[|| Constants

Comman
pi: 3.141592653589793
2! 2.718281828450045
Well-known
Number theory
Analylic inegualilics
Approximation of functions
Enumerating discrete structures
Functional iteration
Complex analysis
Geometry
Probability and stochastic processes
Matural numbers

1-4

5-8

9-16

17-22
Rational numbers

2 as component

3 as component
4 as component
[| 5 as component
[| 6as component
[| 7 as component
O

m & as component
- || User defined
Add constant: | name: value:
error:
Add integers: | from: to:

MESearch only displays candidates whose float value are within +Tolerance, and the
default MESearch Tolerance is 1/2 unit in the last entered digit of your Target constant,
which is difficult to achieve if your Target constant is all 16 digits of the hardware floats
or nearly so. That is why I often choose about 1000 to 10,000 units in the last entered
place for Target floats having 16 significant digits, down to about 10 units in the last
place for Target floats having 7 or less significant digits. Generous tolerances change the
likelihood estimates and are more likely to generate impostors, but unlike overly frugal
tolerances, generous tolerances do not tend to lose true limits. I would rather obtain a
true limit together with a few impostors, then decide for myself which are most plausible

and recompute those with smaller tolerances.

21

MESearch uses your entered absolute tolerance rather than the number of entered
digits, so you should enter all of your computed digits if there are less than 16 or rounded
to 16 otherwise, even if any number of the resulting trailing digits are dubious. Therefore
I entered all 16 digits of 0.1857930606004482, for which my entered tolerance was 102

Here is a summary of the most important information in the resulting output:

’Length‘ Expression ‘ Difference ‘ Likely, ‘ Likely, ‘ Likelys

8 ((e”arccosh (5))~(1/2) + 5 (1/2)) -1 0.0 0.5103 | 0.9135 | 0.9187

9 | arctanh (cos (tan (sin (4/3 /sinh (cos (4)))))) | 6.769¢-13 | 3.3e-11 | 0.8515

9 |arctan(y(2 - tan(Ei(logGamma((3/4)"2)))))| 6.769e-13 | 3.3e-11 | 0.8515

Watching the output panel evolve provides some entertainment while you wait and
helps you decide whether and when to terminate the search manually.

The first expression that met the tolerance was at complexity Length level 8. The
three Likelihood estimates are based on different mathematical arguments. These likeli-
hood estimates are based on the fact that the expressions are all possible expressions com-
posed of the selected components, computed in approximately monotonic non-decreasing
order of complexity. The reason for the two vacant Likelys entries is that Likelys can be
computed only upon completion of searching its Length level, and I manually halted
the search during Length 9.

Clicking a column heading sorts the rows by the values in that column, so I usually
click the middle Likelihoods, which the implementer Salsamendi states is most often most
correct.

If this input float was a mystery float, then having the Difference between the entered
float and the value of the Expression, together with two likelihoods of greater 90% and
one of greater than 50% for the first row would lead me to strongly suspect that the
corresponding expression is the true limit, which it is. In contrast, the very low values
for half the likelihoods of the two Level 9 candidates, with their significantly greater
Differences would lead me to strongly suspect that they are impostors.

Salsamendi [16] describes the data structures, algorithm, and time complexity.

6.2 RIES (Rilybot Inverse Equation Solver)

RIES is implemented in C, and the source code is freely downloadable from https:
//mrob.com/ries . Your computer might already have a C or C++ compiler that you
are unaware of, and there are several good free ones for Mac OS X, the Unix family, and
Windows.

RIES optionally exploits 19-digit IEEE binary80 arithmetic if your CPU and C com-
piler support it, and 19 digits is a valuable increment over the typical 16-digit hardware.
IEEE binary80 is supported by Intel x86 processors, but not by current or past AMD
or ARM processors. The Intel C++ compiler and the free GNU C compiler support
this arithmetic, and Microsoft Visual C can be made to do so by inserting controlfp s
function calls at appropriate places in the source code.

Here is an example by Bill Gosper (private communication):

22

https://mrob.com/ries
https://mrob.com/ries

Mathematica 12.1 cannot determine a closed form for
0 (—1)™cos (\/%—1— (%+n)27r)
Z 1 1 1 1 1

o (3 +n) <§—7§—i—n) (5—1-754—71)

Suppose that you somehow compute a 20-digit approximate value 7.0895773641597344051,
and you invoke RIES as the command line

ries -17 7.0895773641597344051 -s

where -I7 and -s are option settings.

The following lines (slightly edited) are displayed as they are computed:
Your target value: T = 7.08957736415973441 mrob.com/ries

X = pi + 4 for x = T + 0.0520153 {49}

x = 4 sqrt(pi) for x = T + 0.000238039 {58}

x=1/(8 + pi) + 7 for x = T + 0.000176411 {81}

x = (sqrt(pi) + pi)/In(2) for x = T - 0.000106841 {87}

x = e”(e”sqrt(phi))/5 for x = T - 8.60481e-05 {90}

x = In(In(678))"2 for x = T + 7.23949e-05 {93}

x = (phi~2)"sqrt(1 + pi) for x = T - 4.72474e-05 {85}

x = (e”(pi-2))"2-eforx =T + 1.25979¢-05 {90}

x = (1/pi + sqrt(pi))"2 + e for x = T - 2.53137e-06 {92}

x = 3" /phi + 3~phi for x = T + 2.27427e-06 {98}

x = e (sinpi(1/In(9)) + phi) for x = T + 2.0796e-06 {109}

x =3"/(log_3(1 + pi)) + 6 for x = T - 1.32453e-08 {111}

x = 3/pi + 8 - pi" /x for x = T + 5.08817e-10 {113}

sinpi(sqrt(x)/e) = (1/(8/phi - 1))"2 for x = T - 3.68034e-10 {131}

x = 3((pi"/4 - 1/7) + phi) - 2 for x = T - 3.51782e-11 {141}
x=2e"/(1+¢e)-1/(1-3"/2) forx =T + 1.65079-11 {147}

x = ((log_9(1/2 + 8))/4)/e + 7 for x = T - 1.3897e-11 {150}

x = -(pi/cospi(1/sqrt(2))) - pi cospi(1/sqrt(2)) for x = T - 5.28657e-16 {148}
x = pi (1/sinpi(1/sqrt(2) - 1/2) - cospi(1/sqrt(2))) for x = T + 3.05745e-16 {154}
x = (1/tanpi(1/sqrt(8))"4 + 1)(x/2 + pi) for x = T - 1.30104e-18 {164}

(Stopping now because best match is within 3.07e-18 of target value.)

log_A(B) = logarithm to base A of B = In(B) / In(A), cospi(X) = cos(pi * x)
e = base of natural logarithms = 2.71828..., sinpi(X) = sin(pi * x)

In(x) = natural logarithm or log base e, tanpi(X) = tan(pi * x)

phi = the golden ratio, (14sqrt(5))/2 sqrt(x) = square root

A" /B = Ath root of B pi = 3.14159...

23

--LHS-- --RHS-- -Total-
max complexity: 86 81 167
dead-ends: 363904522 872434773 1236339295 Time: 204.127
expressions: 25836915 59427019 85263934 Memory: 1351040KB
distinct: 7974910 0198455 17173365
Total tested: (7.336e+13)

The integers in braces at the right ends of lines beginning “x =" are the complexities,

which are almost monotonic too.

Notice that

e RIES rounded the 20 digit input to 1 digit less than the 19 digit arithmetic it is
using on this computer.

RIES displays a candidate only if its absolute difference from the entered float is
less than that for the previously displayed candidate. Since candidates are gener-
ated in approximate order of non-decreasing complexity, the sequence of displayed
candidates is approximately the Pareto set of optima for the conflicting objectives
of large agreement and small complexity. Thus usually all but the last few of the
displayed candidates are possibly-useful approximations rather than plausible can-
didates for the limit you seek. But as with the subsection [6.1], the very last few can
be overfit impostors.

For the line sinpi(sqrt(x)/e) = (1/(8/phi - 1))"2 it is your responsibility to solve
this equation for x, giving

G . -3-/5
T =) (arcsm (5 (_23 n 3\/§)> + 27m>

e . -3-+5
T= (arcsm (5 25+ 3\/5)> +27m(n + 1))

where n represents an arbitrary integer, then approximate these for various integer
n values to determine which alternative equation and what value of n corresponds
to your input float. The first alternative with n = 0 agrees very closely with the
input float.

For the line x = (1/tanpi(1/sqrt(8))"4 + 1)(x/2 + pi), it also your responsibility
to solve this equation for x, giving

o <1 + cot (%)4) |

1+ t(ﬂ)4
2v/2

In all of the other result lines, RIES was able to uniquely invert the backward table
entries to produce an explicit solution directly.

r=—

24

e Approximation of the explicit formulas for the last three candidates to larger pre-
cision suggests that they are almost certainly equivalent. The fact that the re-
ported discrepancy is two orders of magnitude less for the last result is probably
attributable to the fact that the formulas were not computed with larger precision
arithmetic than the input precision.

RIES uses a particularly compact data structure that allows it to build particularly large
tables before having to resort to slower secondary storage. Compiling with extended
precision reduces the maximum achievable table sizes and is slightly slower, but the
greatly increased number of recognizable constants makes it worthwhile. To maximize
your coverage, compile both a 19-digit and 16-digit version, then try your second choice
if your first choice doesn’t return a satisfying result.

7 Functions built into computer algebra systems

7.1 The Maple identify (...) function

Sometimes you want to use a result of a downloadable application in another piece
of software. For that purpose, functions are usually better than applications or web
applications — because functions have a single output and have no side effects, making
them composable, with results that are the same regardless of temporal reorderings due
to exploiting commutativity, associativity, etc. Also, functions do not require interactive
keystrokes.

The Maple computer algebra system has a function named identify (...) that can
take a float as an argument and returns either one nonfloat constant or the input float if
the function cannot determine a nonfloat that the function judges sufficiently likely to be
the limit you seek. This function is an adaptation by Kevin Hare of a Maple application
by Alan Meichsner [I1], 4], based on the PSLQ integer relation algorithm.

Default Maple floats are arbitrary-precision with only 10-digit significands. Therefore
you must almost always use more precision to have a reasonable chance of success.

The fact that identify (...) results are either the input float or a nonfloat that has
very nearly the same value enables identify (...) to map automatically over the parts of
non-real constants and over non-constant expressions, trying to replace all or at least
some of any floats therein with close nonfloat constants. For example,

0.27675082 — 1.0369278 I . 0.27675082 — I¢(5)
8.311873022 + 11.94535128y VT2 + 4eln(3)y

identify (

where I = \/—1 and (is the Riemann zeta function.

The one float that identify did not convert was a random float. In contrast to ap-
plications that allow you to inspect alternatives and reject them all, a function such as
identify (...) automatically replaces any number of floats in an expression without your
inspection of their complexity and agreement. Therefore it is appropriate for such func-
tions to be parsimonious about the qualifications of replacements it accepts. This makes
it a good sign that the random float was not replaced by a candidate that would almost
certainly be an impostor.

25

7.2 The MPMath, SymPy and Sage identify (...), findpoly (...),
and nsimplify (...), functions

Sage is a software system freely downloadable from http://www.sagemath.org/ that
includes NumPy, SciPy, matplotlib, SymPy, Maxima, GAP, FLINT, R and other pack-
ages. The SymPy computer algebra system in turn includes MPMath, which has an
identify (...) function analogous to Maple’s, except that identification of algebraic num-
bers is done by a separate function named findpoly (...). The SymPy system also has
an nsimplify (...) function somewhat analogous to the NSimplify [...| component of

AskConstants described in subsection

8 Functions and applications for CAS

8.1 AskConstants and associated functions for Mathematica

AskConstants is an application that I implemented in Mathematica, freely downloadable
from AskConstants.org . AskConstants has about 3000 integer relation models, and
bidirectional search with a choice of precomputed tables for which the largest backward
table has about 5 million entries and the largest forward table has about 14 million en-
tries. The table lookup exploits sign and base two significand aliasing, with automatic de-
aliasing and inversion for close matches[]] Thus ignoring overflow underflow, nonreal com-
positions and the aliasing bonus, the largest tables cover about (5x10°)(14x10°% = 7x10'?
expressions. The backward tables and half of the largest forward table are tabulated
constants. The other half of the largest forward table was generated by exhaustive table
building with the elementary functions and the most commonly-occurring special func-
tions to exploit advantages of precomputed tables such as ISC and exhaustive breadth-
first tables of MESearch and RIES.

Figure 4 shows the use of version 4.1 to propose a closed form for the definite integral

X

T d
0/ Vit 2+ (14222

that the Mathematica 12.1 Integrate function cannot determinef]

The input field contains the Mathematica NIntegrate function to compute the ap-
proximate float value displayed below the digit ruler. More commonly, the numerical
integration would be done in a notebook, with the float result copied then pasted into
the AskConstants input field

AskConstants displays the candidate result

+ +
23 3\ 2 NG

"The bonus for base 2 aliasing exceeds that of base 10 aliasing because 2 divides a random reduced
numerator or denominator more often than 10 does.
8] thank Daniel Lichtblau for this example.

ArCoh2] | (L7, AxSbl1). ©)

26

http://www.sagemath.org/
AskConstants.org

Figure 3: AskConstants proposes a formula that agrees with 3.26115... to 24 digits

Yourinput= ~|:|"Nintegrate [1/((1 + 2*2)*(1/2) + (1 + *2)(7/2)), {z,0, o}, WorkingPrecision -» 24]" M a2 [

Quit at Good - Y g g 9 v v v v v Quit soon | Copy "
- —— [3.2611535706473390835833356 x 107

+ some hidden digits :

. ArcCosh[2]
.

Purpose Input tips Math paste buttons Methods Result format Monitor Result

Many worse rejects not shown

(7 Arcsinh[1] Agreement
Ty

Click name then press F1 key for help: ArcCosh, ArcSinh

;|
.
3 2l

es

dels - All, SlowTables - Small} T AT " s AR - -~ - === =-==========
T 201 e .

[79784563 | 1/3
\ 2380209322/
p Agreement = 20.2
15} & -7
S - Entropy10 = 19.4
< = > . Margin = 0.7
efos /," L Terrible margin
of ,sez-b\ P Click to copy
an« L .
S
k ’Q"b'ﬁz
) -
<= dsﬂ‘&
*:b

0 5 10 15 20 25
Entropy10 [candidates]

on the left side of the Result tab and displays an associated scatter plot of Agreement
versus Entropyl0O on the right side, where:

The Agreement of a candidate nonfloat is the number of digits that agree
with the input float within 1/2 unit, up to the length of the input significand,
including any stored digits that are not ordinarily displayed.

Entropy10 is a measure of nonfloat expression complexity that is the sum of the
base-ten logarithms of the absolute values of all the nonzero integers occurring in an
expression, plus about 1.0 per occurrence of a named constant, function or operator
— counting duplicates. The implicit units of Entropyl0 are also digits.

The scatter plot shows the Agreement versus Entropy10 for the one accepted can-
didate as a large dot, with small dots for some computed but rejected candidates
for comparison.

It is desirable to have high agreement, but it is also desirable to have low expres-
sion complexity because floats can be approximated arbitrarily well by sufficiently
complicated nonfloats that are impostors rather than the limit you seek.

Therefore
Margin := Agreement — Entropy10 (7)

combines these two competing objectives into one of maximizing Margin, with the
largest Margin in the upper left corner of the plot and the smallest Margin in the
lower right corner.

27

Diagonal Margin intervals are rainbow color-shaded and labeled with adjectives
from “Terrible” through “Excellent” as a qualitative guide to the likelihood that a
candidate is the limit you seek rather than an impostor [’

Typically, a lower left cluster of rejects is mostly from table lookup, and an upper
right cluster is mostly from integer relations.

As illustrated, hovering the mouse over a plot point lists the nonfloat candidate
together with its coordinates and Margin.

The dashed diagonal line is the lowest acceptable Margin.

The upper horizontal dashed line is the Precision of the input float estimated by
Mathematica’s arbitrary-precision significance arithmetic.

The horizontal dashed line three digits of Agreement below it is the smallest ac-
ceptable Agreement for the Precision of the given float.

The large accepted plot point has an Agreement one digit greater than the input
Precision because the first normally-undisplayed guard digit in the significand also
agreed with the value of the nonfloat computed to larger precision. This “home
team advantage” for arbitrary precision floats computed in the AskConstants input
field or copied and pasted in the same Mathematica session does not occur for floats
copied from outside Mathematica or typed without guard digits.

Notice that the reject in the extreme upper right corner has even larger Agreement
than the accepted result. However, its nonfloat is

168443027133
mArcTan [])

1616842785493

Although this could be the exact expression we seek, such large rational number
numerators and denominators compared to any in the integrand or integration
limits are typical of integer relation overfits. That is why basing acceptance on
Agreement alone is especially problematic for integer relation results["%]

More generally there might be several accepted candidates, and ones judged equiva-
lent by the Mathematica PossibleZeroQ) function are joined by line segments, which
might help you assess them more efficiently.

Automatic of the backward transformation requires an inverse function for every function
in the transformation; and as with most computer algebra systems, Mathematica has very
few inverse special functions — probably because they are extremely difficult to implement
for nonreal arguments. However, AskConstants directly addresses only real floats, and

9Candidates are not produced in approximate order of increasing complexity, so the helpful likelihood
estimates of MESearch are inapplicable. The qualitative adjectives “Terrible” through “Excellent” are
based on my experience with test examples.

10Tt can also be problematic for table lookup, but less frequently.

28

it is not too difficult to implement most inverse special functions for real arguments
and results. Consequently I did that for about 40 special functions. Many of those are
multi-branched, such as for BesselJ, Gamma, and Zeta. Consequently I also implemented
corresponding functions that return the abscissa and ordinates of the infima and suprema
of those functions to accomplish piecewise monotonic decompositions of the functions
being inverted. The real inverse and infima or suprema functions are separately usable,
as are some additional functions analogous to the Mathematica BesselJZero function.
To overcome the limitation to constant expressions, real arguments and results, AskCon-

stants also contains a ProposeBestOrInput function that maps over general expressions
and over the real and imaginary parts of non-real constants similar to the Maple identify
function.

8.1.1 NSimplify [...]

Anyone who tests the programs described here with constants having known nonfloat
representations might eventually notice that surprisingly often an equivalent proposed
candidate is simpler than the published expression. This is because:

e Manual derivations and default computer algebra simplification often produce in-
completely simplified expressions.ﬂ

e Sometimes there is no composition of builtin optional computer algebra transfor-
mations that can produce a particularly simple representable equivalent that exists.

Consequently the AskConstants download includes an NSimplify function that supple-
ments the Mathematica FullSimplify function by approximating a nonfloat input ex-
pression as a float, then applying the ProposeBestOrInput function to that float. If it
returns a nonfloat having smaller Entropy10 than the given nonfloat and the Mathemat-
ica PossibleZero(Q) function judges that the difference between the original expression and
proposed replacement is 0, then the original is replaced. If that doesn’t succeed, then
this process is recursively applied to subexpressions. NSimplify also tries FullSimplify so
that the result is at least that successful. This brute-force combination is slow, but it
can achieve some dramatic simplifications. For example, applying NSimplify to

1
2

4
4+\/7—\/3+\/30—6\/5

Root [—97 + 448 #1 — 672 #12 + 560 #13 — 280 414 + 84 #15 — 14416 + #17 &, 1]

) m
2 — 31177
and the optional trace reported the steps

N | —

produced the result

HSometimes dangerously so, as described in [19].

29

1 . T
— — | —,26| | —=sin| — |,
2 4\/_ 120
reducing Entropy10 by 14.1; and PossibleZeroQ [difference| +— True.
e Level 2: ProposeBestOrInput [N [Root [—97 + -+ + #17 &, 1]], 38] —
reducing Entropyl0 by 18.6; and PossibleZeroQ |difference| — True.

e Level 2: ProposeBestOrInput [N

1
2 — 3117

8.2 Plouffe’s inverter for Maple

After developing ISC, Simon Plouffe developed Plouffe’s Inverter [13], a similar Maple
application with larger tables. As of August 2019, the backward tables contains 405
transformations. The largest version of the forward tables current contains 69x 10° entries
on his largest computer, and it continues to grow. Ignoring overflow, underflow, non-real
values, sign aliasing and significand aliasing, that version can potentially match 405 x
69 x 10% ~ 3 x 10" expressions. That version is too large for practical distribution, but if
you have already tried other systems and desperately want to exhaust your possibilities,
then you can try sending your float constant to him to try.

In contrast, his portable version of the application contains 201 million forward ta-
ble entries. Thus his portable version can match about 405 x 201 x 105 ~ 8 x 10%
expressions, which is about 24 times as many expressions as Inverse Symbolic Cal-
culator, which can match about 100 x 30 x 105 = 3 x 10? expressions. The Maple
program without the tables is freely downloadable text that you can copy from http:
//plouffe.fr/Plouffelnverter2017.txt then copy into a plain text editor such as the
Windows accessory Notepad, then save as file Plouffelnverter.

There are two choices for the tables. The easiest one, which you might want to try
first, is to insert the following fragment into your Plouffelnverter Maple program to use
the ISC forward table remotely:

with(Sockets):

server := ‘wayback.cecm.sfu.ca’;

s := Sockets:-Open(server, 80);

Sockets:-Write(s, cat(‘GET /cgi-bin/ipcgi/lookup.pl?number="*,
valeur,‘&lookup type=simple\n‘));

text := ReadPage(s);

Sockets:-Close(s);

For this alternative the inverter has about four times as many transformations as ISC,
so you will be able to match about four times as many expressions.

The other choice is to download about 9,000 GNU-zipped forward table files totaling
about 370 gigabytes from http://plouffe.fr/ip/, then unzip them with a compatible
unzipper. When unzipped they require a total of slightly more than a terabyte of sec-
ondary storage. You will need a fast reliable internet connection and a sufficiently large
fast USB-connected external drive, which costs less than $100 USA in 2019.

Either way, there are some file-paths that must be changed, as indicated in comments
near the beginning of the program.

30

http://plouffe.fr/PlouffeInverter2017.txt
http://plouffe.fr/PlouffeInverter2017.txt
http://plouffe.fr/ip/

Also, his inverter uses the Unix look command, which does a surprisingly fast search
for a leading substring in a sorted file of strings that are not necessarily all the same
length. If your computer does not already have that part of the Unix-family operating
system, then one easy compact way to acquire the look command is to download the free
Sage mathematical software system, which is independently advantageous.

9 Custom Integer Relation Models

Mystery floats often occur at the high end of a family of problems depending on a
parameter n, with known nonfloat values for the low end. For example, a noticeable
number of definite integrals have nonfloat representations that can be expressed as a
rational linear combination of terms with cofactors that are small positive integer powers
of In2, In 3, {(m) with small positive integer m, and low-order polylogarithms with simple
arguments such as 1/2 or 1/4, perhaps multiplied by v/2 or v/3. The known closed forms
for small n permits a guess of possible cofactors for the next value of n.

An increasing number of computer algebra systems have builtin integer-relation solvers,
and David Bailey and David Broadhurst [[I], 2]|] describe some particularly efficient im-
plementations in Fortran 90 and C++-. Such models are too time consuming to make
them part of the set of more general-purpose integer relation models in tools such as
WolframAlpha, AskConstants, or the Maple and MPMath identify functions. However,
it is easy to simply invoke a built-in or stand-alone PLS(Q function with an input vector
containing your float and a set of cofactors.

10 The curse of extreme magnitude

The software described here is most successful at proposing candidate nonfloats for floats
whose magnitudes are not extremely different from 1.0. A reason for this is that represen-
tations of nonfloat constants having extreme magnitudes often require high-complexity
extreme magnitudes of the numerators or denominators of some rational numbers therein,
which requires extreme precision input floats for integer relation algorithms or pro-
hibitively extreme magnitude integers in any lookup tables. Infrequent exceptions are
functions whose nonzero magnitude can be extremely large or small for arguments that
are not extremely large or small, such as I'(98/3) & 8.26 x 10* or erfc (9) ~ 4.14 x 10737,

Fortunately, most published mathematics constants do not have extreme magnitudes.
For example, in Steven Finch’s table of about 10,000 such constants, nonzero magnitudes
vary from 0.000111582 through 137.0359 with median about 0.9 and quartiles about 0.4
and 1.9.

11 Some causes of impostors
“1.0000001 is a crowd”

— adapted from James Thurber

31

Reasons for impostors include:

1. Many functions f(z) have a stationary value of 1 for some value of x. For ex-
ample, cosz, secx and coshz, at = 0; or tanhz and erf (z) as — oo. In a
neighborhood of the stationary point, such constants that are modeled are likely
to occur as impostors for any that are not modeled, because very low complexity x
can produce values very close to 1.0 and hence each other. For example, sec(1/999)
and cosh(1/999) differ by only 2 units in the 14th place.

2. If for some relatively low complexity nonfloat constants x a modeled expression
f(z) agrees closely with an unmodeled expression g(y), then that makes it easy
for the modeled expression to be an impostor for the unmodeled expression. For
example the low complexity expressions, e'®, 2sinh 18, and 2 cosh 18 differ by only
1 unit in the last of 16 places. If a proper subset of these is modeled and the true
limit is unmodeled, then one of the modeled ones will almost certainly occur as an
impostor having nearly the same agreement and complexity as the correct limit.

12 Conclusions

There are many good tools that can propose nonfloat candidates that your float closely
approximates. Usefully often one of those candidates is the limit that your float would
approach as the working precision increases. Some of the tools are easy to use directly
on the internet, some are built-into a computer algebra system, and others are easy to
download and install.

Most of the programs discussed in this article can propose correct candidates that
none of the others can propose. Search engines, radix search, integer relation models,
precomputed tables and exhaustive run-time tables are each best at overlapping kinds of
expressions. Therefore it is worthwhile to try as many of these programs as is reasonably
convenient.

Therefore it is wise to try at least:

e the Online Encyclopedia of Integer Sequences,
e at least one of the web search engines on your computers and smart phones,

e one of the tools that identify algebraic numbers, returning results such as Root
[polynomial, n| and have numerous integer-relation models (AskConstants, Maple
identify, SymPy identify and WolframAlpha),

e one that has precomputed lookup tables (AskConstants, Inverse Symbolic Calcu-
lator, and Plouffe’s Inverter),

e one that uses exhaustive breadth-first search (MESearch and RIES)

At the very least you should try all that are built into the computer algebra systems
that you already have, together with all of the web-based tools (a browser’s search en-
gine, the Online Encyclopedia of Integer Sequences, Inverse Symbolic Calculator and
WolframAlpha) because that is so easy to do.

32

The success of your efforts depends strongly on knowing how to groom your float for
input, interpret the results, and possibly de-alias and transform the result. These details
vary greatly among the tools, and the descriptions of these tools here are intended partly
as brief user guides that you can review for tools that you are not already familiar with.

When none of these programs accessible to you can propose a plausible constant, then
at least you can have the peace of mind of greatly reducing the chance that your problem
has a simple nonfloat result that you did not find.

Acknowledgments

Thank you Daniel Lichtblau, Robert Munafo, Simon Plouffe, Neil Sloane and Michael
Trott for your helpful suggestions.

References

[1] Bailey, D. H., The PSLQ Algorithm: Techniques for Efficient Computation (slides),
2010, https://www.davidhbailey.com/dhbtalks/dhb-carma-20100824.pdf

[2] Bailey, D. H. and Broadhurst, D. J., Parallel Integer Relation Detection: Techniques
and Applications, 1999, https://arxiv.org/pdf/math/9905048. pdf

[3] Borwein, J. and Borwein, P.; A Dictionary of Real Numbers, Wadsworth Inc., 1990.

[4] Borwein, P., Hare, K. G., and Meichsner, A., Reverse Symbolic computations,
the identify function, https://www.researchgate.net/publication/267425704_
REVERSE_SYMBOLIC_COMPUTATIONS_THE_IDENTIFY_FUNCTION

[5] Corless, R, Gonnet, G., Hare, D., Jeffrey, D., Knuth, On the Lambert W function,
Advances in Computational Mathematics, 5, (1996), pp. 329-359.

[6] Dougherty-Bliss, R. and Zeilberger, D., Automatic conjecturing and proving
of exact values of some infinite families of infinite continued fractions, 2020,
https:/ /arxiv.org/pdf/2004.00090.pdf

[7] Ferguson, H. R. P. and Bailey, D. H., A Polynomial Time, Numerically Stable Integer
Relation Algorithm, RNR Technical Report RNR-~91-032, July 14, 1992.

[8] Ferguson, H. R. P., Bailey, D. H., and Arno, S., Analysis of PSLQ, an integer rela-
tion finding algorithm, NAS Technical Report NAS-96-005, NASA Ames Research
Center, Moffet Field, CA. April 1996 and Mathematics of Computation 68 (1999)
351-3609.

[9] Finch, S. R., Mathematical Constants, Encyclopedia of Mathematics and its Appli-
cations, Cambridge University Press, 2003.

[10] Finch, S. R., Mathematical Constants II, Encyclopedia of Mathematics and its Ap-
plications, Cambridge University Press, 2018.

33

https://www.davidhbailey.com/dhbtalks/dhb-carma-20100824.pdf
https://arxiv.org/pdf/math/9905048.pdf
https://www.researchgate.net/publication/267425704_REVERSE_SYMBOLIC_COMPUTATIONS_THE_IDENTIFY_FUNCTION
https://www.researchgate.net/publication/267425704_REVERSE_SYMBOLIC_COMPUTATIONS_THE_IDENTIFY_FUNCTION
https://arxiv.org/pdf/2004.00090.pdf

[11] Meichsner, A., Integer relation algorithms and the recognition of numer-
ical constants, M.S. Thesis, Simon Fraser University, 2001. http://www.
collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ61592. pdf

[12] Plouffe, S., Credits and References for Inverse Symbolic Calculator. http://
wayback.cecm.sfu.ca/projects/ISC/credits.html, 1995.

[13] Plouffe, S., L'Inverseur, March 1998, http://vixra.org/pdf/1409.0151v1.pdf

[14] Raayoni, G. et al., The Ramanujan Machine: Automatically generated conjectures
on fundamental constants, 2020, https://arxiv.org/pdf/1907.00205.pdf

[15] Robinson, H. P. and Potter, E., Mathematical Constants, UCRL-20418, UC-32
Math. and Comp., TID-4500 (57th Ed.), March 1971.

[16] Salsamendi, J. Z., An efficient mathematical expression searcher for constant recog-
nition and some conjectures and theorems discovered with it, 2013, http://www.
xuru.org/downloads/papers/MESearch.pdf

[17] Salvy, B. and Zimmermann, P., GFUN: a Maple package for the manipulation of
generating and holonomic functions in one variable, ACM Transactions on Mathe-
matical Software, 20(2), June 1994, pp. 163-177.

[18] Shamos, M. 1., Shamos’s, Shamos’s Catalog of the Real Numbers,
https:/ /citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=repl&type=pdf

[19] Stoutemyer, D. R., Ten commandments for good default expression simplification,
Journal of Symbolic Computation 46(7), July 2011, pp 859-887.

34

http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ61592.pdf
http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp04/MQ61592.pdf
http://wayback.cecm.sfu.ca/projects/ISC/credits.html
http://wayback.cecm.sfu.ca/projects/ISC/credits.html
http://vixra.org/pdf/1409.0151v1.pdf
https://arxiv.org/pdf/1907.00205.pdf
http://www.xuru.org/downloads/papers/MESearch.pdf
http://www.xuru.org/downloads/papers/MESearch.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9997&rep=rep1&type=pdf

	Introduction
	Text tables
	Mathematical Constants table by Robinson & Potter
	Other extensive text tables

	.pdf and .html tables
	Web browsers
	Free web applications
	The On-line Encyclopedia of Integer Sequences
	WolframAlpha
	Inverse Symbolic Calculator
	Simple Lookup and Browser
	Smart Lookup
	ISC Integer relation Algorithms
	Generalized Expansions

	Inverse Symbolic Calculator Plus

	Freely downloadable standalone applications
	MESearch
	RIES (Rilybot Inverse Equation Solver)

	Functions built into computer algebra systems
	The Maple identify(…) function
	The MPMath, SymPy and Sage identify(…), findpoly(…), and nsimplify(…), functions

	Functions and applications for CAS
	AskConstants and associated functions for Mathematica
	NSimplify [...]

	Plouffe's inverter for Maple

	Custom Integer Relation Models
	The curse of extreme magnitude
	Some causes of impostors
	Conclusions

