1. Section 2.1: Exercises 2, 3, 5, 6

2. Section 2.2: Exercises 2(a,b), 4(a)

3. For each MATLAB program below, determine the number of operations it performs. Express your answers in terms of n.

 (a) $v = \text{zeros}(n,1)$;
 \begin{verbatim}
 for i=1:n
 for j=1:i
 v(j) = 1 + v(i) + v(j);
 end
 if i>1
 v(i) = 2*v(1);
 end
 end
 \end{verbatim}

 (b) $v = \text{ones}(n,1)$;
 \begin{verbatim}
 for i=1:n
 for j=1:n
 for k=j+1:n
 v(k) = 2*v(j);
 end
 end
 end
 \end{verbatim}

4. Consider a lower triangular linear system

\[
\begin{align*}
 a_{11}x_1 &= b_1, \\
 a_{21}x_1 + a_{22}x_2 &= b_2, \\
 a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3, \\
 \vdots & \\
 a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \ldots + a_{nn}x_n &= b_n.
\end{align*}
\]

 (a) If $x_1, x_2, \ldots, x_{i-1}$ are known, what is x_i?

 (b) Write a MATLAB function that solves the above equations for x_1, x_2, \ldots, x_n, starting from x_1. The first line of your function should read

 \begin{verbatim}
 function x = solvesystem(a,b)
 \end{verbatim}

 where a is an $n \times n$ array of coefficients (some of which are zero), b is an $n \times 1$ array, and x is an $n \times 1$ array.

 (c) Test your function on $a = \begin{bmatrix} 1 & 0 & 0 & 0; & 2 & 3 & 0 & 0; & 4 & 5 & 6 & 0; & 7 & 8 & 9 & 10 \end{bmatrix}$ and $b = \begin{bmatrix} 2; & 1; & 3; & -4 \end{bmatrix}$. Report the vector x that you obtain.