1. Section 2.1: Exercises 2(a,b), 3, 5, 6
2. Section 2.2: Exercises 2(a,b), 4(a)
3. For each MATLAB program below, determine the number of operations it performs. Express your answers in terms of n.
```
(a) v = zeros(n,1);
    for i=1:n
        for j=1:i
        v(j) = 1 + v(i) + v(j);
        end
        if i>1
            v(i) = 2*v(1);
        end
    end
(b) v = ones(n,1);
    for i=1:n
        for j=1:n
            for k=j+1:n
            v(k) = 2*v(j);
            end
        end
    end
```

4. Consider a lower triangular linear system

$$
\begin{array}{ll}
a_{11} x_{1} & =b_{1}, \\
a_{21} x_{1}+a_{22} x_{2} & =b_{2}, \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3} & =b_{3}, \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots+a_{n n} x_{n} & =b_{n} .
\end{array}
$$

(a) If $x_{1}, x_{2}, \ldots, x_{i-1}$ are known, what is x_{i} ?
(b) Write a MATLAB function that solves the above equations for $x_{1}, x_{2}, \ldots, x_{n}$, starting from x_{1}. The first line of your function should read

```
function x = solvesystem(a,b)
```

where a is an $n \times n$ array of coefficients (some of which are zero), b is an $n \times 1$ array, and x is an $n \times 1$ array.
(c) Test your function on $\mathrm{a}=\left[\begin{array}{llllllllllllll}1 & 0 & 0 & 0 ; 230 & 0 ; 4 & 6 & 0 ; 789 & 10\end{array}\right]$ and $\mathrm{b}=[2 ; 1 ; 3 ;-4]$. Report the vector x that you obtain.

