1. Section 2.4: Exercises 2(a), 4(b), 6
2. Section 2.5: Exercises $1(\mathrm{a}, \mathrm{b})$
3. Section 2.6: 5(a), 6(a), 8(a)
4. Consider the linear system

$$
\left[\begin{array}{ccccc}
3 & -1 & & & \\
-1 & 3 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 3 & -1 \\
& & & -1 & 3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
\vdots \\
1 \\
2
\end{array}\right]
$$

(a) If the Jacobi method is applied to this linear system, what is the iteration for the i th entry x_{i} ? Split your answer into three cases: $i=1, i=n$, and $2 \leq i \leq n-1$.
(b) Write a MATLAB function that carries out K steps of the Jacobi method for this linear system, using the zero vector as an initial guess. Use the following template:

```
function x = jacobi(n,K)
for k=1:K
            for i=1:n
                if i==1
                elseif i==n
                else
                end
    end
end
```

(c) Test your function with $n=100$ and $K=10,20,30$. Report the errors $\left\|x^{(K)}-x\right\|$ you obtain using Matlab's norm function. (The exact solution is $x=o n e s(n, 1)$.)
(d) Repeat parts (b) and (c) using the Gauss-Seidel method in place of the Jacobi method.

