Handwritten exercises:

1. Let $x=\binom{x_{1}}{x_{2}}$ and

$$
\begin{aligned}
& r_{1}(x)=x_{1}^{2}+x_{2}^{2}-3, \\
& r_{2}(x)=x_{1} e^{x_{2}}-4, \\
& r_{3}(x)=x_{1}^{3}+x_{2}-2 .
\end{aligned}
$$

Approximate the minimizer of $\frac{1}{2}\left(r_{1}(x)^{2}+r_{2}(x)^{2}+r_{3}(x)^{2}\right)$ by:
(a) Applying one step of the Gauss-Newton method with initial guess $x^{(0)}=\binom{1}{0}$.
(b) Applying one step of the Levenberg-Marquardt method with initial guess $x^{(0)}=$ $\binom{1}{0}$ and $\lambda=2$. (Use λI rather than $\lambda \operatorname{diag}\left(A^{T} A\right)$.)
2. Using an initial guess $c_{1}=1, c_{2}=0$, apply one step of the Gauss-Newton method to find (approximately) the curve $y=c_{1} e^{c_{2} t}$ that best fits the data $(0,1),(1,2),(2,6)$ in the least squares sense. On a single plot, draw the curve you obtain and the data points.
3. Using an initial guess $c_{1}=1, c_{2}=\frac{\pi}{2}$, apply one step of the Gauss-Newton method to find (approximately) the curve $y=c_{1} \cos c_{2} t$ that best fits the data $(0,2),(1,0)$, $(2,-3)$ in the least squares sense. On a single plot, draw the curve you obtain and the data points.

Computer problem:
4. Repeat problem (2) in MATLAB, this time doing as many iterations as needed until $\left\|\operatorname{Dr}\left(x^{(k)}\right)^{T} r\left(x^{(k)}\right)\right\|$ falls below 10^{-10}. Plot the final curve and data points in MATLAB.

