1. Use a Taylor expansion around $t=t_{j+1}$ to find the local and global truncation errors for the method $w_{j+1}=w_{j}+h f\left(t_{j+1}, w_{j+1}\right)$.
2. Section 6.2: Computer Problems 1(b), 3(b). Repeat both problems with Euler's method, RK4, and the Adams-Bashforth two-step method (using Euler for the first step).
3. Section 6.3: Exercises 3(a,b), 5(b).
4. Let $p(t)$ be the polynomial of degree 2 that interpolates $f(t, y(t))$ at $t=-h, 0, h$. Show that

$$
\int_{0}^{h} p(t) d t=h\left(\frac{5}{12} f_{1}+\frac{2}{3} f_{0}-\frac{1}{12} f_{-1}\right)
$$

where $f_{j}=f\left(t_{j}, y\left(t_{j}\right)\right)$ and $t_{j}=j h$. What method does this suggest for solving $y^{\prime}=f(t, y)$?
5. Section 6.6: Exercise 1(b). The exact solution is $y(t)=t-1+e^{-t}$.
6. Section 6.6: Exercise 3. Hint: Find a formula for $w_{j+1}-1$ in terms of $w_{j}-1$.

