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Risk Management: What went wrong?

• Forecasts of risk by banks, investors and regulators failed 
to avoid extreme and even catastrophic loss.

• Clearly there were serious lapses in risk management.

•  This has led some to claim that:

– Statistics is incapable of detecting extreme risk in markets

– Markets failed to do their job of pricing risk

• These claims are simply wrong.
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Risk Management: What went wrong?

• The wrong tools were used. 

•  Appropriate statistical analysis of market prices provided 
warning of both the likelihood and severity of loss in 
advance of the crisis.

• The necessary tools were available: 

– Extreme Value Theory statistics

– Expected Shortfall (Conditional Value at Risk) not  Value at Risk

– These techniques are well within the capabilities of financial 
market participants and regulators

4



 
Risk (Mis)Management and the Financial Crisis

 

Analysis
Omega

!Risk Management" the Wrong Way

• Value at Risk (VaR) has been one central feature of the 
failure to manage risk.

• The use of the normal distribution as a model of financial 
returns has been another.

• Both are in widespread use (and are sanctioned by the 
Basel Committee on Bank Supervision for the calculation 
of bank regulatory capital).

• This is a serious and easily corrected flaw.
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What is Value at Risk?

• 99% Value at Risk is the answer to the question: “What is 

the worst loss we should expect 99 days in 100?”

• Therefore it is also the answer to the question: “What is 

the least we should expect to lose 1 day in 100?”

• In either formulation it omits the critical question:

•  “What should we expect to lose on that 1 day in 100?”
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Expected Shortfall

• 99% Value at Risk is simply the dividing line between what 
happens 99 days in 100 and 1 day in 100.

• 99% Expected Shortfall answers the question: “What 

should we expect to lose 1 day in 100?”

• 99% Expected Shortfall (ES) is the average outcome on 
that 1 day in 100.

•  If you can calculate 99%VaR you can, and should, 

calculate 99% ES.
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The Wrong Statistical Model

• Statistical estimates can only be reliable when the tools 
are appropriate to the data.

• The normal distribution is almost always inappropriate in 
financial markets.
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Normal Distribution Model ES in the 1929 Crash
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30 Sept 1929

Worst loss on Dow Jones Index in previous 250 days:  - 4.22%

Normal Distribution Frequency of a worse loss: 1 day in 1461 (5.8 years)

Expected Shortfall on exceeding a loss of 4.22%:  -4.59%

On 23 October 1929 the Dow Jones Index dropped by 6.33%

Normal Distribution Frequency of a worse loss: 1 day in 58,000 (232 
years)

Expected Shortfall on exceeding a loss of 6.33%:  -6.67%

On 28 October the Dow Jones Index lost 13.47%
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The Wrong Statistical Model

• Statistical estimates can only be reliable when the tools 
are appropriate to the data.

• The normal distribution is almost always inappropriate in 
financial markets.

• Fat tails, i.e. events too extreme and too frequent to be 
consistent with normality, are generic in financial data.
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The Right Statistical Model

• Extreme Value Theory (EVT) is the branch of probability & 
statistics designed to deal with fat tails and extreme 
events.

• It begins with a wonderful result of Fisher and Tippett 
published in 1928.
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Extreme Value Theory
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Fisher and Tippett studied the distribution of largest (or smallest) 
independent, identically distributed (i.i.d) random variable from a sample 
of size n, as n tends to infinity.  

If F is the distribution from which the samples are drawn then
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A Brief History of Mathematics in Finance
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1 Missed Opportunity: 1927 Discovering Extreme Value
Statistics before the 1929 Crash (but not applying them
to Stock Market Prices)

Prob{Xmax < r} = F (r)n (1)

The ‘3 Types’ Theorem
Stability Postulate: If there is a limiting distribution it must be its own limit so

Gn(x) = G(anx + bn) (2)

for all positive integers n Gumbel

G(x) = e−e−x
(3)

on (−∞,∞)
Fréchet

G(x) = e−x−α
(4)

on [0,∞)
where α > 0

Weibull
G(x) = e−(−x)α

(5)

on (−∞, 0]

Geometer’s version
Gλ(x) = G(gλx) (6)

for some gλ in the proper Affine group on the line.
Gnedenko’s necessary and sufficient conditons for a distribution F to be in the domain

of attraction of Fréchet for example:

1

We want to know this distribution up to the action of the ‘location scale’ 
transformation group (the proper affine group on the line).
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Stability Postulate (Statisticians’ Version): 
If a limiting distribution G exists, it must be the distribution of its own 
maxima so for positive integers n there must be a location-scale 
transformation such that:
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Fréchet

G(x) = e−x−α
(4)

on [0,∞) with α > 0

Weibull
G(x) = e−(−x)α

(5)

on (−∞, 0] with α > 0
G(x) = e−e−x

(6)

G(x) = e−x−α
(7)

G(x) = e−(−x)α
(8)

Geometer’s version
Gλ(x) = G(gλx) (9)

1

The Right Answers to the Wrong Questions
A Brief History of Mathematics in Finance

William F. Shadwick
Omega Analysis Limited
40 Bowling Green Lane

London EC1R 0NE
Contact: William.Shadwick@OmegaAnalysis.com

February 25, 2010

1 Missed Opportunity: 1927 Discovering Extreme Value
Statistics before the 1929 Crash (but not applying them
to Stock Market Prices)

Prob{Xmax < r} = F (r)n (1)

The ‘3 Types’ Theorem
Stability Postulate: If there is a limiting distribution it must be its own limit so

Gn(x) = G(anx + bn) (2)

for all positive integers n

Gumbel
G(x) = e−e−x

(3)

on (−∞,∞)
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Gnedenko (1943) gave necessary and sufficient conditions for the limiting 
distribution of extremes to be one of the Fisher and Tippett 3 Types. 
(These conditions describe the ‘domain of attaction’ of each of the types)

For example, the Fréchet distributions are characterized by:

for some gλ in the proper Affine group on the line.
Gnedenko’s necessary and sufficient conditons for a distribution F to be in the domain

of attraction of Fréchet for example:

lim
n→∞

1− F (x)
1− F (tx)

= tα (10)

for all t > 0
Picklands and Peaks over Threshold
If L is a loss threshold we want to know the distribution of returns conditional on

being below the loss threshold L as

L→ −∞ (11)

Picklands showed that if this limit exists, it is approximated by one of a family of
‘generalized Parteo distributions’. Each of these is in the domain of attraction of one of
the ‘Three types’ of Fisher and Tippett. In the case of Fréchet distributions for example
we can write the distribution as

G(x) =
1

(1− x
σ )λ

(12)

on (−∞, 0]

It is easy to check Gnedenko’s condition for the mirror image distribution

H(x) = 1−G(−x) (13)

on [0,∞) to see that this is in the domain of attraction of

e−x−λ
(14)

2 Missed Opportunity: 1975 Picklands Synthesis of Peaks
over Threshold and EVT

This really seems to have been the beginning of the ‘Modern Era’ of EVT. Picklands
showed that if the distribution of maximum values above a threshold converges as the
threshold tends to ∞ then it converges to a distribution of ‘generalized Pareto form’.
This distribution in turn is in the domain of attraction of one of Fisher and Tippett’s
three types.

Thus there’s only one, rather convenient, lamp post to look under. So there’s no
question where you should look in the ‘Peaks over Threshold’ problem: If there’s a
solution you’ll find it using a generalized Pareto distribution as your model for the tail.
The trick in financial applications is that the requirements of accuracy and efficiency
must be balanced. Accuracy typically leads to the use of a lot of data. Efficiency
requires that the answer keep pace with changes in the markets. This typically requires
small samples (which reduce accuracy, and so on).

2

for all t > 0.
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• If L is a loss threshold, we want to know the limiting distribution of 
returns below the loss threshold as L tends to minus 100% or minus 
Infinity.

• Picklands (1975) proves the !one lamp post" theorem.

• If there"s a limiting distribution it approaches a !Generalized 
Pareto Distribution" in the domain of attraction of one of Fisher 
and Tippett"s 3 types.
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The fourth Section is devoted to a simple risk control strategy based on our EVT
CVaR estimates. We illustrate its use at the 99% level for shareholdings in Citigroup,
Lehman Brothers, Halifax Bank of Scotland, the Royal Bank of Scotland, BNP Paribas
and ING. It is applied in a completely generic manner with no attempt to optimise the
technology in any of the examples.

The results are very encouraging for the case that markets price the risk in shares
efficiently and that market data, and appropriate statistical tools provide the means for
investors to control that risk.

2 Conditional Value at Risk and Risk Control

The 99% Value at Risk is the maximum loss expected 99 times out of 100. It is therefore
the minimum loss expected 1 time in 100. It is immediately clear that VaR cannot be
used to manage risk, even if the VaR estimate is reliable, because two assets which have
the same VaR may be expected to produce completely different losses on the critical 1
day in 100. There is no justification for regarding two assets as equally risky simply
because they have the same 99% VaR.

Aside from the unhelpful information that the potential 1 day loss on a shareholding
is bounded by 100%, it is impossible to know what ‘worst case’ one should prepare for on
that critical 1 time in 100 when the 99% VaR level is breached. However, it is possible
to say how big this loss is on average. This is precisely the 99% Conditional Value at
Risk (CVaR), or Expected Shortfall, as it is known in the insurance world.

Unlike VaR, CVaR can be used to manage risk, provided it can be estimated reliably.
It is perfectly sensible to regard two assets with the same CVaR, or Expected Shortfall
as equally risky from a statistical point of view.

While the 99% CVaR is the average loss beyond the 99% VaR threshold, and not
a lower bound, the distribution of such losses is not symmetric (See Figure 1). As a
consequence, losses which breach the 99% VaR level are more likely to be in the range
from the 99% CVaR to the 99% VaR than they are to breach the 99% CVaR. Because
of this, the 99% CVaR can serve as an ‘approximate worst loss level’ provided it can be
estimated reliably.

The question of the reliability of CVaR in practice hinges on the accuracy with which
the probability and severity of loss can be estimated from historic data. This is where
EVT enters the picture.

EVT [4, 5, 6] is the branch of probability and statistics which was created for cases
where the likelihood and magnitude of extreme events cannot be predicted correctly by a
normal distribution. EVT uses the observed data to predict the distribution of extreme
events such as large losses in financial markets.

EVT may be thought of as a framework that tells you, under fairly general condi-
tions, that using a distribution with the asymptotic behaviour of the generalised Pareto
distribution

G(x) =
1

(1− x
σ )λ

(1)

to model extremes is not only a reasonable choice, it is essentially the only choice.
Figure 1 illustrates the great difference between the estimates of VaR and CVaR

provided by the normal model and the EVT approach. In both cases, the estimates
are based on the returns of the previous 250 days. By the end of December 2007, the
Citigroup 99% VaR and CVaR, based on the normal model, were -4.43% and -5.05%

2

For example, Picklands’ Generalized Pareto distributions on the negative 
half line given by

are easily seen to satisfy Gnedenko’s condition for the Fréchet distribution 
with parameter lambda. 

(Exercise: Apply the test to the mirror image distribution H(x)=1-G(-x) to 
show this.)
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2

Since there’s only one lamp post, that’s the one we look under.  To model 
losses in returns distributions, we fit tails of the form

If lambda is greater than 1, it counts the number of finite moments.  Here’s 
what the fit looks like for Citigroup at the end of 2007, with a Normal 
distribution tail for comparison.
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The EVT model (solid lines) 
says the 1-day 99% Expected 
Shortfall is -9.7%.

From a normal model 
(dashed lines) it is only -5%.

The normal model is 
hopelessly over-optimistic.



 
Risk (Mis)Management and the Financial Crisis

 

Analysis
Omega

Risk Management the Right Way

• We illustrate what Citigroup management, shareholders 
and regulators would have seen in the run up to the crisis 
using appropriate statistical tools.

• The same analysis for major banks in Canada, the EU, the 
US and the UK  (as well as for major market indices) 
shows that our results are generic.
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Citigroup

What the right statistics had to say.

• Data: Daily return on Citigroup Shares.

– 250 day rolling data window, i.e. each day the oldest return is 
discarded and the most recent one added

• Analysis : Omega Metrics ® implementation of !Peaks over 
Threshold" EVT to fit a Generalised Pareto Tail.

– 1) Estimate EVT probability of worst loss in the sample and the ES 
conditional on exceeding this loss

– 2) Estimate EVT-based 99% VaR and 99% ES to control risk in 
holding Citigroup shares 

23
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Citigroup

What the right statistics had to say.

• Analysis : Omega Metrics ® implementation of !Peaks over 
Threshold" EVT to fit a Generalised Pareto Tail.

– At market close on the last trading day of each month compute 
EVT probability of worst loss observed in the previous 250 days

– Estimate the ES conditional on exceeding this loss

– Compare ES estimate with the average breach of the previous 
worst loss, if any, over the subsequent month

– Repeat, updating monthly from January 2007 to April 2009

24



 
Risk (Mis)Management and the Financial Crisis

 

Analysis
Omega

25

Citigroup Report Worst Return Probability Expected Breach Breach
Date (prev. 250 days) of Loss Shortfall Date Return

Estimate

2007 31-Jan-07 -2.47  1 day in 136 -3.73 27-Feb-07 -3.93
28-Feb-07 -3.93 363 -5.92 - -
31-Mar-07 -3.93 278 -5.95 - -
30-Apr-07 -3.93 275 -6.02 - -
31-May-07 -3.93 277 -6.07 - -
30-Jun-07 -3.93 232 -6.22 - -
31-Jul-07 -3.93 201 -6.24 9-Aug-07 -5.24

31-Aug-07 -5.24 241 -8.53 - -
30-Sep-07 -5.24 213 -8.52 - -
31-Oct-07 -5.24 167 -8.52 1-Nov-07 -6.91

19-Nov-07 -5.88
Nov. Average -6.39
Breach

30-Nov-07 -6.91 157 -11.67 - -
31-Dec-07 -6.91 148 -11.30 15-Jan-08 -7.28

Citigroup ES Estimates 
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Citigroup Report Worst Return Probability Expected Breach Breach
Date (prev. 250 days) of Loss Shortfall Date Return

Estimate

2008 31-Jan-08 -7.28 1 day in 127 -11.94 5-Feb-08 -7.41
29-Feb-08 -7.41 113 -12.30 - -
31-Mar-08 -7.41 79 -12.50 - -
30-Apr-08 -7.41 77 -12.12 - -
31-May-08 -7.41 70 -11.90 - -
30-Jun-08 -7.41 61 -11.81 24-Jul-08 -9.73

28-Jul-08 -7.56
Jul. Average -8.64
Breach

31-Jul-08 -9.73 93 -15.57 - -
31-Aug-08 -9.73 86 -15.54 15-Sep-08 -15.14

17-Sep-08 -10.95
29-Sep-08 -11.89

Sep. Average -12.66
Breach

Citigroup ES Estimates 
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Citigroup Report Worst Return Probability Expected Breach Breach
Date (prev. 250 days) of Loss Shortfall Date Return

Estimate

2008 30-Sep-08 -15.14 1 day in 174 -23.91 3-Oct-08 -18.45
31-Oct-08 -18.45 187 -29.07 19-Nov-08 -23.50

20-Nov-08 -26.33
21-Nov-08 -20.00

Nov. Average -23.28
Breach

30-Nov-08 -26.33 229 -43.00 - -
31-Dec-08 -26.33 216 -42.02 - -

2009 31-Jan-09 -26.33 1 day in 138 -43.32 27-Feb-09 -39.02
28-Feb-09 -39.02 242 -64.57 - -
31-Mar-09 -39.02 210 -64.12 - -

30-Apr-09 -39.02 204 -63.31 - -

Citigroup ES Estimates 
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Citigroup
Monitoring Risk With the Right Statistics.

• Analysis : Omega Metrics ® implementation of !Peaks over 
threshold" EVT to fit a Generalised Pareto Tail.

–  Estimate EVT-based 1-day 99% VaR and 99% Expected Shortfall 
daily from January 2004 to June 2009 using returns from the 
previous 250 days

28
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Citigroup EVT 99% VaR and ES
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• Analysis : Omega Metrics ® implementation of !Peaks over 
threshold" EVT to fit a Generalised Pareto Tail.

–  Estimate EVT-based 99% VaR and 99% Expected Shortfall daily 
from January 2004 to June 2009

– Construct a risk-controlled portfolio of Citigroup shares and cash, 
with a target 1-day 99% ES of -4% (No short positions)

– Compare with the alternative of holding only Citigroup shares with 
an initial $1million investment

30

Citigroup
Controlling Risk With the Right Statistics.
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Citigroup EVT Risk Control
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Citigroup NAVs in $1000s
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Citigroup EVT Risk Control 

33

Risk Limit: -4% daily Citigroup Citigroup

Interest rate: 3% per annum Risk Control Raw

Breaches of -4% 4 97

Average Breach (% per day) -4.48 -9.11

Worst Loss (% per day) -5.09 -39.02

Mean Return (% per day) -0.02 -0.07

Standard Deviation (% per day) 1.10 4.62

Average Gain (% per day) 0.79 2.12

Average Loss (% per day) -0.77 -2.09

Avg. Gain to Avg. Loss 1.03 1.01

Breaches of EVT 99% VaR n/a 26

Sample Size 1400 1400
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Dow Jones Index ES Estimates

Dow Jones Report Worst Return Probability Expected Breach Breach
Index Date (prev. 250 days) of Loss Shortfall Date Return

Estimate

2007 31-Dec-06 -1.96 1 day in 110 -3.21 - -
31-Jan-07 -1.88 104 -3.10 27-Feb-07 -3.29
28-Feb-07 -3.29 334 -5.46 - -
31-Mar-07 -3.29 285 -5.53 - -
30-Apr-07 -3.29 284 -5.53 - -
31-May-07 -3.29 329 -5.57 - -
30-Jun-07 -3.29 291 -5.77 - -
31-Jul-07 -3.29 242 -5.95 - -

31-Aug-07 -3.29 160 -6.16 - -
30-Sep-07 -3.29 149 -6.17 - -
31-Oct-07 -3.29 139 -6.07 - -
30-Nov-07 -3.29 103 -6.13 - -
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Dow Jones Index ES Estimates

Dow Jones Report Worst Return Probability Expected Breach Breach
Index Date (prev. 250 days) of Loss Shortfall Date Return

Estimate

2008 31-Dec-07 -3.29 1 day in 95 -5.89 - -
31-Jan-08 -3.29 75 -5.88 - -
29-Feb-08 -2.93 58 -5.08 - -
31-Mar-08 -2.93 54 -5.01 - -
30-Apr-08 -2.93 52 -5.09 - -
31-May-08 -2.93 51 -4.90 6-Jun-08 -3.13

26-Jun-08 -3.03
Jun. Average -3.08
Breach

30-Jun-08 -3.13 55 -5.12 - -
31-Jul-08 -3.13 51 -5.20 - -

31-Aug-08 -3.13 55 -5.03 15-Sep-08 -4.42
17-Sep-08 -4.06
22-Sep-08 -3.27
29-Sep-08 -6.98

Sep. Average -4.68
Breach
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Dow Jones Index ES Estimates

Dow Jones Report Worst Return Probability Expected Breach Breach
Index Date (prev. 250 days) of Loss Shortfall Date Return

Estimate

2008 30-Sep-08 -6.98 1 day in 273 -10.93 9-Oct-08 -7.33
15-Oct-08 -7.87

Oct. Average -7.60
Breach

31-Oct-08 -7.87 206 -12.42 - -
30-Nov-08 -7.87 136 -12.69 - -

2009 31-Dec-08 -7.87 113 -13.00 - -
31-Jan-09 -7.87 108 -12.97 - -
28-Feb-09 -7.87 107 -12.69 - -
31-Mar-09 -7.87 99 -12.67 - -
30-Apr-09 -7.87 100 -12.46 - -
31-May-09 -7.87 100 -12.39 - -
30-Jun-09 -7.87 94 -12.85 - -
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What the right statistics had to say

• This is not special to Citigroup or the Dow Jones Index 

• The same analyses produce very similar results for:

– Lehman Brothers

– Halifax Bank of Scotland

– Royal Bank of Scotland

– BNP Paribas

– ING

– Equity Indices (worldwide).

– Other asset classes 

– Hedge Fund Indices

• Our Analyses are highly efficient

– Other EVT methods will produce similar results 

37
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What the right statistics have to say.
Additional Results:

• Canadian Banks had significantly less downside going into 
the crisis than their counterparts in the US, the UK and 
Europe.

• Price-based triggers for conversion of debt capital 
instruments for banks and for counter-cyclical regulatory 
capital 

• Evidence for the ability to detect bubbles.

38
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Risk Management: What Next?

• The solution is not a research project: The right tools 
already exist.

• Statistics didn"t fail and Markets didn"t fail: Naive statistical 
analysis of markets failed.

• Careful statistical analysis is the appropriate level of 
!mathematical modelling" in finance.

39
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Risk Management: What went wrong?

• The wrong tools were used. Market Prices contain the 
necessary information.

• Appropriate statistical analysis would have provided 
advance warning of both the likelihood and severity of loss 
in advance of the crisis.

• The necessary tools are available:

– Extreme Value Theory statistics

– Expected Shortfall based on EVT

– These are well within the capabilities of financial market 
participants and regulators

• They should be adopted.

40


