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If F is a cumulative distribution on [A, B] (where either
of A or B may be infinite) and F has a finite mean µ

then the Omega function of F is defined as

Ω(x) =
I1(x)

I2(x)
(1)

where

I1F (x) =
∫ x

A
F (z)dz (2)

and

I2F (x) =
∫ B

x
1− F (z)dz (3)
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The functions I1F and I2F are analogous to the values
of a put and a call with strike x respectively.

I1F (x) = EF (Max(z − x,0)) (4)

and

I2F (x) = EF (Max(x− z,0)) (5)

They satisfy a virtual ‘put-call parity’ relation

I2F (x)− I1F (x) = µ− x (6)
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ΩF may be interpreted as the ratio of the value of the
downside to the upside.

The smaller this is, the better off you are.

The upside and downside balance at the mean.
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Properties of ΩF :

Ω(µ) = 1 (7)

dΩF

dx
=

1

I2F
> 0 (8)

lim
x→A

ΩF = 0 (9)

lim
x→B

ΩF =∞ (10)
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It also follows from the definition and the put-call parity
relation for I1 and I2 that

ΩF (x) = 1 +
x− µF

I2F (x)
. (11)

We can now see that

ΩF = ΩG ⇐⇒ F = G, (12)

since ΩF=ΩG implies µF=µG and, from equation 11,

I2F = I2G (13)

Differentiating equation 13 gives F=G.
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We can also use equation 11 to produce an inverse for-
mula for recovering F from ΩF .

F = 1 +
1

ΩF − 1
+

µ− x

(ΩF − 1)2
dΩF

dx
(14)
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The Standard Dispersion (a.k.a.‘The om’ ).

We define the om ωF by

1

ωF
=

dΩF (µ)

dx
. (15)

We have

ωF = I1F (µ) = I2F (µ). (16)
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the concentration the higher the value of Ω′(µ).
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This is a general property. The standard dispersion al-
lows us to refine the Markov inequality:
For any non-negative random variable x with mean µ,

probability(x > a) ≤
µ

a
. (17)

Our version:

probability(x− µ > b) <
ω

b
. (18)

This is always sharper than (17) for a sufficiently large
(and there are distributions where ‘sufficiently large’ is
arbitrarily close to the mean.)
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Chebychev inequality: For any random variable x with
mean µ and variance σ2,

probability(|x− µ| > a) ≤
σ2

a2 . (19)

Our version:

probability(x > µ + b) <
ω

b
. (20)

and

probability(x < µ− b) <
ω

b
. (21)
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Properties of the Standard Dispersion

It is easy to check that if

φ : x → ax + b (22)

is a proper affine transformation and

F = φ∗G (23)

then

ΩF = φ∗ΩG (24)

It follows from this that ω is translation invariant and
scales like the mean.

Geometry of Distributions 26 Feb 2010 14



Analysis
Omega

If two distributions F and G defined on [A, B] have the
same mean µ then

∫ B

A
(F −G)dx = 0. (25)

If, in additon they have the same om then
∫ µ

A
(F −G)dx = 0 (26)

and
∫ B

µ
(F −G)dx = 0. (27)

By contrast if they have the same standard deviation
then

∫ B

A
x(F −G)dx = 0. (28)
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Standard deviation gives much more weight to outliers
than the om does.

Example: Returns on the S&P 500 for the last 10,361
days and the same period excluding 19 October 1987.

∆σ = 2.23% but ∆ω = 0.29%.
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It follows from the scaling property of ω that, when the
standard deviation is defined, the ratio of standard de-
viation to standard dispersion is an affine invariant. We
have called this the first C-S Character.

Examples:
Uniform distribution: CS1 = 4√

3
Normal distribution: CS1 =

√
2π

Laplace distribution: CS1 = 2
√

2
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When distributions have different C-S characters, stan-
dard deviation is not a common unit of measurement.

In financial data or instrument measurements subject to
noise, a common number of oms as a threshold for out-
liers or noise can be much more appropriate than using
thresholds in standard deviations.
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C-S Characters are remarkably robust statistics. Even
small data samples give results close to population val-
ues. They provide a much more practical measure of ‘fat
tails’ than kurtosis. For the S&P example already cited,
∆ kurtosis = 240% but ∆CS1 = 2.8%. (Incidentally the
CS1 value of 2.79 proves the returns aren’t normal.)

These statistics are currently being used in investment
risk management and to remove noise from measure-
ments of atmospheric data.
(see e.g. Cascon and Shadwick IMCA Journal of Invest-
ment Consulting Summer 2006 and Summer 2007)
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Properties of the Standard Dispersion Continued

The om is half the mean absolute deviation:

ωF =
1

2
EF (|x− µF |). (29)

Addition formula: If F =
∑n

i=1 aiFi where the ai are
positive and sum to 1, then µF =

∑n
i=1 aiµi and

ωF =
n∑

i=1
aiωi +

n∑

i=1
ai

∫ µF

µi

Fidx (30)
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The Geometry Determined by the Affine Group

The proper affine group on the line is the largest sub-
group of the diffeomorphism group that preserves the
property of having a finite first moment.

This group is responsible for the two parameters which
appear in almost all the standard textbook distributions.
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The assignment F → log(ΩF ) commutes with the action
of the affine group.

Thus the geometry defined by Omega functions under
this group induces geometry on the space of distribu-
tions with finite first moment.

This turns out to have some remarkable structure.
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The Equivalence Problem

Coframe on the affine group

θ1 = ydx (31)

θ2 =
dy

y
(32)

Coframe adapted to the (invariant) I = log(Ω(x))

ω1 = dI =
Ωx

Ω
dx (33)

ω2 =
dy

y
(34)
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We have

ω1 = Jθ1 (35)

where

J =
Ωx

yΩ
(36)

Any diffeomorphism that preserves both co-frames also
preserves J so we have a second functionally independent
invariant.
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Now

dI = ω1 (37)

and
dJ

J
= Hω1 − ω2, (38)

where

H =
ΩxxΩ

Ω2
x
− 1. (39)

Geometry of Distributions 26 Feb 2010 27



Analysis
Omega

But H depends only on x so it follows that the remaining
information is in the functional dependence of H on I.

The exceptional equivalence classes are the ones for
which H is a constant function c.
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So far we have not used the information that there is
a distribution F for which I = log(ΩF ). This condition
limits the possible constant values of H.

When I = log(ΩF ), we can evaluate H at µ:

H(µ) = 2F (µ)− 1 (40)

from which it follows that −1 < c < 1.
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The normal forms corresponding to the exceptional cases
c = 0, −1 < c < 0 and 0 < c < 1 are

Ω = ex (41)

Ω = x
−1
c (42)

and

Ω =( −x)
−1
c (43)

respectively.

Geometry of Distributions 26 Feb 2010 30



Analysis
Omega

We denote the corresponding exceptional distributions
by CSS0 and CSSλ respectively, where λ = −1

c . (These
first appeared in a paper with B.A.Shadwick, before we
solved the equivalence problem.)

CSS0 has µ = 0 and ω = 1. It has finite moments of all
orders. Its standard deviation is π

√
2
3, which provides a

probabilistic definition of π.
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The‘Cascon-Shadwickian’ CSS0 is a global attractor un-
der a natural action on the space of Omega functions.
This results in a new Central Limit Theorem.

For any integer N > 1, the assignment ΩF → (ΩF )N

commutes with the natural action of the affine group.

The inversion formula (15) shows (after a long calcula-
tion) that ΩF is the Omega function of a distribution
FN . As N tends to ∞, FN tends to CSS0(µF , ωF

N ).
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The proof of this result depends only on the behaviour
of the invariant H for Ωλ.

H(Ωλ) =
1

λ
H(Ω) (44)

It is an exercise to show that H is a bounded function,
so as λ →∞, H(Ωλ)→ 0.

The convergence is remarkably quick as the following
movie shows.
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Because everything commutes with the affine group ac-
tion, we may as well pass to the quotient in which:

Any distribution defined on R is replaced by its normal
form with µ = 0 and ω = 1

Any distribution defined on a half line bounded below
is replaced by a normal form on [0,∞) with µ = 1 (We
have to use both affine parameters to translate the lower
bound to 0 and re-scale the mean to 1 so we cannot
choose the om.)

Geometry of Distributions 26 Feb 2010 34



Analysis
Omega

Any distribution defined on a half line bounded above is
replaced by a normal form on (−∞,0] with µ = −1 (We
have to use both affine parameters to translate the lower
bound to 0 and re-scale the mean to −1 so we cannot
choose the om.)

Any distribution defined on a compact interval is replaced
by a normal form on [−1,1]. (This uses both affine
parameters so we cannot choose the mean or the om.)
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In this quotient, the Cascon-Shadwickian may be re-
placed by a δ-function with µ = 0 and ω = 0.

(Note that this is quite distinct from a Gaussian δ-function
as it is the limit of distributions whose CS character is
π

√
2
3 and not

√
2π.)
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There is nothing (aside from some details in the proof!)
to restrict the powers of Omega functions to integers
(as the movie illustrated.)

In particular one may take fractional powers, which leads
to a new affine invariant: the age of a distribution.
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The age is defined as the reciprocal of the smallest power
of ΩF that is still the Omega function of a distribution.
This is clearly an affine invariant and only the exceptional
distribution CSS is ‘ageless’.

Examples:
Normal distribution: Age = π√

π(π−3)
Uniform distribution: Age = 2
Exceptional distributions:
CSSλ: Age = 1

λ
CSS0: Age =∞.
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Distributions age in different ways.

Some unimodal distributions (like the normal distribu-
tion) start off as bimodal and age to unimodal.

Some originally tri-modal age to unimodal (like the Laplace
distribution).

Others (like the exceptional distributions) remain uni-
modal throughout.
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Now we turn to the ‘3 Types Theorem’ of Fisher and
Tippett. If X is the maximum value of a sample of size n

i.i.d draws of a random variable with distribution G than
Prob(X < r) = Gn(r).

The Statistician’s Stability Postulate is that if there is a
limiting distribution G as n →∞ (up to an action of the
proper affine group) then the limiting distribution must
be its own attractor so

Gn(x) = G(anx + bn) (45)
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The Geometer’s version of the Stability postulate is that
for all α ≥ 1

Gα(x) = G(gαx) (46)

where gα is in the (proper) Affine group and g1 = Identity.

We have already solved the Equivalence Problem for
an invariant function I, which we will now take to be
I = log(G) under the action of this group.
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We know that the solution depends on the functional
relation H = H(I) where (Equation 39)

H =
GxxG

G2
x
− 1 =

GxxG−G2
x

G2
x

(47)

If we write this in terms of derivatives of I = log(G) we
have

H(I) =
Ixx

I2
x

(48)
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We know that I(Gα) = log(Gα) = αI(G) and the Stabil-
ity Postulate ensures that raising G to the power α does
not change the equivalence class.

But we also have (Equation 44)

H(αI) =
1

α
H(I). (49)

Differentiating this with respect to α and evaluating at
the Identity gives

H(I) + I
dH

dI
= 0. (50)

So H(I) = c
I for some constant c.

Geometry of Distributions 26 Feb 2010 43



Analysis
Omega

Combining this with Equation (48) we have

Ixx

Ix
= c

Ix

I
(51)

or
d[log(Ix)]

dx
=

d[log(Ic)]

dx
(52)

which we solve to find the normal forms corresponding
to the Stability Postulate. Integrating once gives

Ix

Ic
= c1 (53)

for another constant c1.
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So far we have not used the fact that I = log(G) where
G is a probability distribution. This means 0 ≤ G(x) ≤ 1
so log(G) is negative as is log(−log(G)) = log(−I).

Using these restrictions, in the case that c = 1 Equa-
tion 53 gives I = −exp(−c1x + c2) and finally

G(x) = exp(−e−c1x+c2) (54)

This is the Gumbel distribution and its Equivalence Class
is given by

H(I) =
1

I
(55)
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The remaining cases which produce the Fréchet and
Weibull distributions are left as exercises. Their Equiva-
lence Classes are given by

H(I) = (1 +
1

α
)I (56)

and

H(I) = (1−
1

α
)I (57)

respectively.

Geometry of Distributions 26 Feb 2010 46



Analysis
Omega

As α → ∞ both the Fréchet and Weibull Equivalence
Classes approach the Gumbel Equivalence Class.

These three cases include all of the relations of the form

H(I) =
c

I
(58)

so these are all the distribution equivalence classes that
satisfy the Stability Postulate.
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