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Abstract. Temporarily-captured Natural Earth Satellites (NES) are very ap-

pealing targets for space missions for many reasons. Indeed, NES get captured
by the Earth’s gravity for some period of time, making for a more cost-effective

and time-effective mission compared to a deep-space mission, such as the 7-

year Hayabusa mission. Moreover, their small size introduces the possibility of
returning with the entire temporarily-captured orbiter (TCO) to Earth. Ad-

ditionally, NES can be seen as interesting targets when examining figures of

their orbits. It requires to expand the current state-of-art of the techniques in
geometric optimal control applied to low-thrust orbital transfers. Based on a
catalogue of over sixteen-thousand NES, and assuming ionic propulsion for the
spacecraft, we compute time minimal rendezvous missions for more than 96%
of the NES. The time optimal control transfers are calculated using classical

indirect methods of optimal control based on the Pontryagin Maximum Prin-
ciple. Additionally we verify the local optimality of the transfers using second

order conditions.
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1. Introduction. Our era is witnessing an expansion in the complexity of endeav-
ors beyond the Earth’s orbit. Designing and executing space missions to reach as-
teroids in the universe has attracted much research over the past few decades. Near
Earth asteroid rendezvous (NEAR) and Hayabusa (formerly known as MUSES-C)
are completed missions that involved a rendezvous with an asteroid including a
safe landing. Both missions took several years to complete with Eros and Itokawa,
the respective asteroids for the NEAR and Hayabusa missions, being Mars-Crosser
asteroids. The existence of temporarily-captured natural Earth satellites would lit-
erally provide a gateway for a breakthrough into our understanding of the universe.
Indeed, temporarily-captured natural Earth satellites are close to Earth and revolve
around it, and they are also small in size. This creates the opportunity for short time
duration missions and therefore minimizes the cost. In their work [23], the authors
construct a theoretical database of temporarily-captured natural Earth satellites.
From this work, it can be observed that temporarily-captured natural Earth satel-
lites presents a large variety of orbits from very regular to extremely scattered.
This diversity of orbits is appealing because we can not only test the capabilities
of our transfer computation methods, but also develop experience designing trans-
fer maneuvers that may not have been completed before. Space missions to reach
asteroids, comets or temporarily-captured natural Earth satellites present major
challenges for the spacecraft. There is a need for techniques to produce years of or-
bit adjustment for the spacecraft to match position and velocity with these objects
of negligible mass.

Rendezvous missions to temporarily-captured natural Earth satellites differ from
NEAR and Hayabusa in several ways. Indeed, temporarily-captured natural Earth
satellites are called irregular satellites. After their capture, they orbit the Earth for
a finite time (that typically amounts to a few months) to eventually escape from
Earth’s gravity. As a consequence, tight time constraints become a major criterion
when designing a mission to reach a temporarily-captured natural Earth satellite.
The maximum propulsion allowed during an orbital transfer may vary highly, de-
pending on the thrusters with which the spacecraft is equipped. This remains true
even for long-duration (several-year) missions. As an example, a bipropellant 450N
main thruster was used during the Near mission [35] whereas the main propulsion
for the Hayabusa mission was provided by four ion thrusters, each of them supply-
ing a maximum thrust of 4.8e-3N [25, 26]. It is consequently of high importance,
to meet the engineering needs, to model transfers within a wide range of maximal
thrusts. We consider in this paper a spacecraft equipped with a ion propulsion
system, the lowest admissible thrust for our transfers to temporarily-captured nat-
ural Earth satellites is fixed 0.1N and the highest admissible thrust to be 1N. We
first establish rendezvous missions for the highest thrust available, and then, for a
sample of those temporarily-captured natural Earth satellites that can be reached
with the maximum thrust, we use a continuation method to determine what is the
lowest admissible thrust for a rendezvous mission to that temporarily-captured nat-
ural Earth satellite. Our study suggests that the minimum thrust that can be used
is related to the velocities of the temporarily-captured natural Earth satellites at
the rendezvous point.

The main goal of this paper is to apply techniques from geometric optimal control
to determine the percentage of temporarily-captured natural Earth satellites to
which we can design a rendezvous mission from the catalogue of the over sixteen-
thousand ones computed in [23].
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The outline of the paper is as follows. In section 2 we define temporarily-captured
natural Earth satellites and introduce the database our work is based on. Section
3 is devoted to orbital transfers in general and the specific techniques of geometric
optimal control. In section 4 we apply the tools introduced in section 3 to our
problem and present our methodology to design the rendezvous missions. Finally,
section 5 presents our results complemented by graphical representations.

2. Temporarily-Captured Natural Earth Satellite. Definition and detailed
information about temporarily-captured natural Earth satellites can be found in
[23]. We here only repeat the necessary background for the work presented in this
paper.

In Granvik et. al. (2012) [23], the authors evaluate a population statistic for
temporarily-captured natural Earth satellites, or so-called mini-moons. The work
is based on an integration of 10 million “test-particles” in space to determine which
do get temporarily captured by Earth’s gravitational field. The authors obtained
a catalogue of over eighteen-thousand meteoroids that would get temporarily cap-
tured. Our work is based on this characterization. We here actually consider
16,923 meteoroids from their catalogue for purely structural reasons (the files were
not readable by us). The remaining ones will be treated in future work. It is from
their integrated temporarily-captured natural Earth satellites database that we se-
lect our orbital transfer targets. Moreover, it can be shown statistically that there
is at least one 1-m-diameter temporarily-captured natural Earth satellite orbiting
the Earth at any given time.

Let us first introduce some precise definitions. A natural Earth satellite, or NES,
is defined as a celestial body that orbits the Earth. More precisely, a natural object
in space is defined as temporarily-captured by a planet (or any body orbiting the
Sun, including the Moon) by requiring simultaneously, see [23], that

1. the planetocentric Keplerian energy Eplanet < 0,
2. the planetocentric distance is less than three Hill radii for the planet in ques-

tion (e.g., for the Earth 3RH,⊕ ∼ 0.03 AU).

In addition, for an object to be considered a temporarily-captured orbiter, or
TCO, we require that it makes at least one full revolution around the planet in a
co-rotating frame while being captured (the line from the planet to the Sun is fixed
in this coordinate system) [23] . As a convention for this paper, we will always
be referring to TCO which orbit the Earth (though the definition is stated more
generally), and so, in this paper, TCO will be equivalent to temporarily-captured
NES.

Figure 1 presents five distinct TCO orbits. It can be observed that TCO’s orbits
can differ significantly in total amount of captured time and number of revolutions
around the Earth.

Work is undergoing to design methodologies to detect TCOs. It presents many
challenges, one of them being the small size of those objects. In the event that detec-
tion is successful, a well-defined algorithm to produce a space mission to rendezvous
with the detected TCO is highly desirable to take advantage of this opportunity.
This is the main focus of our work. The average number of revolutions around the
Earth for a TCO is 2.88± 0.82, and the average time of capture 286± 18 days [23].
This makes those objects appealing targets. Indeed, an object in orbit provides
more time for the detection, planning, and execution of a space mission, when com-
pared to that of an object which just flies by, (i.e. does not orbit). The first step
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(d) TCO 16
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(e) TCO 19
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Figure 1. Examples of five TCO orbits with a variety of regular-
ity, viewed in the inertial frame. A legend for all five plots is given
in (f). The trajectories of the Moon and the theoretical point L1
are shown as the outer and inner rings (respectively) around Earth.
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Figure 2. A histogram representing the distribution of rendezvous
points with respect to their distance from Earth, where 1 Lunar
distance (LD) = 384,400 km.

to a complete space mission to a TCO is to design a rendezvous with the TCO,
by which we mean that the spacecraft must match the position and velocity of the
TCO at the selected point.

Clearly, a critical aspect in the design of a rendezvous mission is the location
of the rendezvous point. In our work this choice is based on existing results from
[17, 31]. In [31], two-dimensional transfers using the restricted three-body model are
completed to the Earth-Moon Lagrangian point L1. The paper also suggests that L1
serves as a natural gateway to other transfer destinations, such as a parking orbit
around the Moon. Moreover, this approach was implemented in [17] and proved
successful for generating rendezvous with TCO. For these reasons, we choose to
continue to focus on rendezvous near the L1 point, as we did in [17]. An obvious
extension for future work would be to select rendezvous points elsewhere on the
TCO orbits. We define by qrend the desired rendezvous point on the TCO orbit,
which, in this paper, is the point on the TCO orbit that minimizes the Euclidean
distance to the L1 point. Figure 2 displays the distribution of distances from the
rendezvous points of every TCO to the Earth. Notice that the L1 point is at a
distance of 0.85 LD.

Analysis of the TCO data provides more understanding of how the TCO and L1
are related. We see that 12,561 TCO come within 1 Lunar Distance (LD) of the L1
point, and that 386 come within 0.1 LD of the L1 point, (note, one Lunar Distance
(LD) is defined as 384,400 km, an approximate average distance between the Earth
and the Moon). In [17], transfers were attempted to a sample of 100 TCO chosen
from those 386 TCO.
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TCO # dL1 (LD) dEarth (LD) |vrend| (LD/d) trend (d) Tcapt (d) norbits
1 1.46 2.30 0.17 180.53 452.16 -2.88
2 1.97 2.63 0.17 239.20 285.65 -1.84
3 0.85 0.25 0.72 59.51 139.96 -1.45
4 0.60 0.25 0.59 33.80 70.06 -1.11
5 0.37 0.72 0.36 21.26 85.94 -1.17
6 0.60 1.40 0.27 97.03 197.79 -1.41
7 1.06 1.18 0.30 28.22 168.07 -1.25
8 1.31 1.93 0.23 109.44 513.73 -2.74
9 0.36 0.88 0.32 151.98 182.29 1.31
10 1.15 1.81 0.21 261.97 359.72 -2.81
11 2.61 3.42 0.17 81.18 303.15 -1.93
12 0.90 1.23 0.26 78.78 206.05 -1.32
13 0.50 0.57 0.38 342.51 508.83 -1.12
14 0.45 0.52 0.44 82.00 153.16 -1.31
15 0.63 0.23 0.64 114.89 136.53 -1.33
16 0.16 0.80 0.29 308.46 1,506.92 16.82
17 0.42 1.06 0.30 173.23 448.26 -1.46
18 0.73 1.57 0.23 109.94 217.82 -1.32
19 0.23 0.75 0.33 421.80 517.89 -4.76
20 0.25 0.76 0.35 81.19 125.49 -1.32

Table 1. Capture statistics for a sample of 20 TCO from the
database [23]. Column 3 gives the Euclidean distance dL1 in LD
between the TCO rendezvous point qrend and L1, and similarly,
column 4 gives the Euclidean distance dEarth in LD between the
TCO rendezvous point qrend and Earth. Column 5 gives the time
trend in days after initial capture that qrend occurs. Column 6
displays the total amount of time Tcapt in days that the TCO is
captured, and column 7 gives the number of orbits norbits the TCO
makes around the Earth while captured.

On Table 1, we provide data for a sample of 20 TCOs that present very different
features as it can be observed from the table. For all but one of the TCO in the
table, successful transfers are found using the methodology described in this paper.
The corresponding thrust and more information about these transfers can be found
in Table 2. Notice that no transfer to qrend has been found within the thrust
constraint of our spacecraft to TCO #3. This seems to be due to the high velocity
of the TCO at this location, being unable to be matched by the spacecraft. This
suggests further study to refine the choice of qrend to take into account the velocity
as well.

3. Orbital Transfers.

3.1. Background. Mathematical modeling of orbital transfers is a major aspect
of designing and executing space missions. The understanding of the mathematical
properties of the celestial systems and of the possible space trajectories to be used
by a spacecraft enables the completion of missions along with minimizing the use
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of correction maneuvers, the transfer time or the propellant cost. Since the start of
space exploration in the second half of the twentieth century, tremendous progress
has been made in developing mathematical tools for modeling accurate, feasible
and efficient orbital transfers. The theoretical study of Newton’s laws of universal
gravitation [30], on which classical mechanics is based, permits the generation of
the well-known Hohmann and bi-elliptic transfers [38], notably used during the
Apollo program to bring a spacecraft from a low-Earth circular orbit to a higher
one by minimizing the so-called change of velocity ∆v. Over the last two decades,
the application of theory of dynamical systems to astrodynamics has enabled the
construction of new types of low-energy transfers. This includes, in particular,
brilliant methods based on chaotic motion in celestial mechanics, presented in details
in [6] and successfully put into practice to rescue the Japanese spacecraft Hiten
[7]. Other techniques take advantage of the structure of invariant manifolds of the
collinear equilibrium points for the restricted three-body problem [37] to construct,
inter alia, low-energy transfers following a prescribed itinerary between a planet and
its moons [21]. The design of the Genesis discovery mission [22] relies, for instance,
on this idea.

Optimal control theory also provides powerful results to classify and study the
geometric characteristics, and to compute time-minimizing or energy-minimizing
transfers. This is this approach that we adopt in this paper. Numerous and various
kinds of optimal transfers have been simulated in the last fifteen years, by means of
both direct and indirect methods in optimal control, in the two, three or four-body
problems [5, 8, 16, 20, 29, 31]. In particular, optimal transfer strategies for the
Smart-1 mission from the European Space Agency [33, 34] are proposed in [19]. In
this article, we present a principle of using indirect numerical methods to compute
an exhaustive collection of time-minimal transfers from the geostationary orbit to
TCO.

3.2. Geometric Optimal Control. The numerical methods developed in this ar-
ticle for computing time-minimal transfers from the geostationary orbit to TCO are
based on theoretical results from optimal control theory [2, 11, 24, 27], the central
one being the Pontryagin Maximum Principle [32]. This fundamental theorem pro-
vides necessary conditions for a solution of a control system to be optimal, with
respect to a given integral cost, and can be stated as follows. Let V be an open
subset of Rn, U an open subset of Rm and let us consider a general control system

q̇(t) = f(q(t), u(t))

minu(.)
∫ tf
0
f0(q(t), u(t))dt

q(0) = q0 ∈M0, q(tf ) ∈M1

(1)

where f : V × U −→ and f0 : V × U −→ R are smooth, u(.) is a bounded
measurable function defined on [0, t(u)] ⊂ R+ valued in U , tf < t(u) and M0 and
M1 are two subsets of Rn. We call an admissible control on [0, tf ] a control u(.)
whose corresponding trajectory q(.) satisfies q0 ∈ M0 and q(tf ) ∈ M1. Then, for
an admissible control u(.) to be optimal, there necessarily exists a non-positive real
p0 and an absolutely continuous map p(.) on [0, tf ], called the adjoint vector, such
that p(t) ∈ Rn, (p0, p) 6= (0, 0) and, almost everywhere on [0, tf ], there holds

q̇(t) =
∂H

∂p
(q(t), p(t), p0, u(t)), ṗ(t) = −∂H

∂q
(q(t), p(t), p0, u(t)), (2)
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where H is the so-called pseudo-Hamiltonian function defined by

H : V × Rn × R∗− × U −→ R
(q, p, p0, u) −→ p0f0(q, u)+ < p, f(q, u) > .

Moreover, the maximization condition

H(q(t), p(t), p0, u(t)) = max
v∈U

H(q(t), p(t), p0, v) (3)

is satisfied almost everywhere on [0, tf ]. Lastly, the transversality conditions implies
that if M0 (resp. M1) is a regular submanifold of Rn, then

p(0) ⊥ Tq(0)M0 (resp. p(tf ) ⊥ Tq(tf )M1). (4)

where Tq(0)M0 (resp. Tq(tf )M1) is the tangent plan of M0 (resp. M1) at q(0) (resp.

q(tf )). We call an extremal curve a solution (q, p, p0, u) of equations (2) and (3).
Notice that since U is an open set of Rm, the maximization condition 3 can be
written ∂H

∂u = 0. Let’s assume that this expression of the maximization condition
implies that any extremal control in a neighborhood of u(.) is a smooth feedback
function of the form ur(t) = ur(q(t), p(t)). The pseudo-Hamiltonian H can thus
be written as a real Hamiltonian function Hr(q, p) = H(q, p, p0, ur(q, p)) and any
extremal trajectory can be expressed as a solution z = (q, p) of the Hamiltonian
system  q̇(t) =

∂Hr

∂p
(q(t), p(t)), ṗ(t) = −∂Hr

∂q
(q(t), p(t))

(q(0), p(0)) = (q0, p0).
(5)

In this context, any solution of the optimal control problem (1) is, consequently,
necessarily the projection of an extremal curve solution of the Hamiltonian system
(5). Thus, extremal curves provide candidate trajectories for being optimal solutions
of (1).

Second order optimality condition have been derived for constrained control and
state, see [15, 28, 39] for instance. In our work, we consider the unconstrained
situation when computing the second order optimality condition. The condition
therefore reduces to the analysis of conjugate points as described in [1, 10, 13, 36].
To the Hamiltonian system (5), let us associate the Jacobi equation equation on Rn

δq̇(t) = d
∂Hr

∂p
(q(t), p(t)).δq(t), δṗ(t) = −d∂Hr

∂q
(q(t), p(t)).δp(t) (6)

along an extremal z(.) = (q(.), p(.)). A Jacobi field is a nontrivial solution J(t) =
(δq(t), δp(t)) of (6) along z(.). A Jacobi field is said to be vertical at time t if
δq(t) = 0. A time tc is said to be a geometrically conjugate time if there exists
a Jacobi field which is vertical at 0 and at tc. Then, q(tc) is said to be conjugate
to q(0). Conjugate times can be geometrically characterized by considering the
exponential mapping which is defined, when the final time is free (such as in the
time minimization problem) by

expq0,t : p0 −→ q(t, q0, p0) (7)

where q(t, q0, p0) is the projection on the phase space of the solution of (5) evaluated
at the time t. We denote expt(

∂Hr

∂p ,−
∂Hr

∂q ) the flow of the vector field (∂Hr

∂p ,−
∂Hr

∂q ).

The following proposition results from a geometrical interpretation of the Jacobi
equation, see [10] for a detailed proof. In our case the manifold M is identified to
Rn and T ∗q0M denotes the cotangent space at q0.
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Theorem 3.1. Let q0 ∈ M , L0 = T ∗q0M and Lt = expt(
∂Hr

∂p ,−
∂Hr

∂q ))(L0). Then

Lt is a Lagrangian submanifold of T ∗M whose tangent space is spanned by Jacobi
fields starting from L0. Moreover q(tc) is geometrically conjugate to q0 if and only
if expq0,tc is not an immersion at p0.

Under generic assumptions, the following theorem connects the notion of con-
jugate time and the local optimality of extremals, see for instance [1, 10, 13] for
greater details.

Theorem 3.2. Let t1c be the first conjugate time along z(.). The trajectory q(.) is
locally optimal on [0, t1c) in L∞ topology. If t > t1c then q(.) is not locally optimal
on [0, t].

3.3. Indirect Methods. As stated in the section 3.2, extremal curves are solutions
of a true Hamiltonian system, satisfying given boundary conditions and derived
from the application of the Pontryagin Maximum Principle. They can be numeri-
cally computed by means of the so-called indirect methods. The main difficulty to
overcome consists of determining the initial value of the adjoint vector p0 such that
the boundary conditions are satisfied. Rewriting the boundary and transversality
conditions under the form R(q(0), p(0), q(tf ), p(tf )) = ~0, admissible extremals can
be expressed as solutions of{

q̇(t) = ∂Hr

∂p (q(t), p(t)), ṗ(t) = −∂Hr

∂q (q(t), p(t))

R(q(0), p(0), q(tf ), p(tf ) = ~0.
(8)

When the transfer time tf is free, solving the boundary value problem is then
equivalent to finding a zero of the so-called shooting function [12] S defined by

S : (p0, tf ) −→ R(z0, ztf ). (9)

In the free final time situation, the condition Hr = 0, deduced from the applica-
tion of the Pontryagin Maximum principle [32], is added to the function R. By
construction S is a smooth function, and a Newton type algorithm can be used to
determine its zeroes.
Newtonian methods, however, are very sensitive to the initial guess, which must be
chosen accurately. To do so, we use a smooth continuation method [3]. This tech-
nique is based on connecting the Hamiltonian Hr to an Hamiltonian H0, whose cor-
responding shooting equation is easy to solve, via a parametrized family (Hλ)λ∈[0,1]
of smooth Hamiltonians. The algorithm then is divided into the following steps:

1. Firstly, we solve the shooting equation associated with H0;
2. We then set up a discretization 0=λ0, λ1,. . . , λN=1 and solve iteratively the

shooting equation associated with Hλi+1
by using as initial guess the solution

of the shooting equation corresponding to Hλi
.

3. The solution of the last shooting equation associated with HλN
is consequently

a zero of the shooting function S.

Let us mention that for the smooth continuation method to converge, we must verify
at every step of the algorithm that the first conjugate point tc along the generated
extremal curve is greater than the final time tf , see [14].
The software Hampath, see [18], is designed along the method described above and
allows one to check the second order optimality condition when smooth optimal
control problems are considered.
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4. Rendezvous Missions to Temporarily-Captured Natural Earth Satel-
lites. In this section we apply the method described in section 3 to design ren-
dezvous mission to TCOs. A small sample of such missions has been calculated
successfully in [17]. The main goal of this paper is to determine the percentage
of TCOs, from the catalogue of over sixteen-thousand TCOs computed in [23], to
which we can design a rendezvous mission and to determine the lowest possible
thrust within our constraints using a continuation method.

4.1. Mathematical Model. As a first approach, we consider time-minimal trans-
fers from the geostationary orbit to TCO as space trajectories within the Earth-
Moon system. Due to the small eccentricity of the orbit of the Moon around the
Earth, we choose to model the motion of the spacecraft in the Earth-Moon system
using the equations of the restricted three-body problem. Neglecting the influence
of the other planets is justified by the fact that during the transfer, the natural satel-
lite to reach is temporarily captured by the Earth. On Figure 3 we represent the
distance between the orbits of the TCOs obtained using our model when initialized
from the rendezvous point and the ones computed in [23] to determine the accuracy
of our approximation. While it can be observed on specific TCOs that the model
presents some significant discrepancies with the initial orbits, for a large percentage
of the TCOs the restricted three-body model provides a satisfactory approximation
which therefore motivates this first study.

This classical model is derived from the Newton’s law of universal gravitation,
[30]. It describes the three-dimensional motion of a celestial object with neglige-
able mass (the spacecraft), subjected to the gravitational fields of two main bodies
called primaries (the Earth and the Moon), revolving in circular orbits at constant
angular velocity 1 around their center of mass G under the influence of their mutual
gravitational attraction. We normalize the respective mass M1 and M2 of the Earth
and the Moon so that M1 + M2 = 1 and denote µ = M2

M1+M2
∈ [0, 12 ] the reduced

mass of the problem. For the Earth and Moon, µ = 0.01215361914. Using a rotat-
ing coordinates system centered at G with an angular velocity 1, the Earth and the
Moon are respectively located at the fixed locations (−µ, 0, 0) and (1−µ, 0, 0). Let
us denote (x(t), y(t), z(t)) the spatial position of the spacecraft at time t. In the
rotating coordinates system, the equations of the free motion of the spacecraft are
written [37]

ẍ− 2ẏ =
∂V

∂x
, ÿ + 2ẋ =

∂V

∂y
, z̈ =

∂V

∂z
, (10)

where −V is the mechanical potential given by

V =
x2 + y2

2
+

1− µ
%1

+
µ

%2
+
µ(1− µ)

2
, (11)

with %1 =
√(

(x+ µ)2 + y2 + z2
)
, %2 =

√(
(x− 1 + µ)2 + y2 + z2

)
representing

the distances from the spacecraft to the primaries. This dynamical system has five
equilibrium points defined as the critical points of the potential V . They are all
located in the (x, y) plane and divided in two different types. The Euler points,
denoted L1, L2 and L3, located on the line y = 0 defined by the primaries, are non-
stable, according to the Arnold’s stability theorem [4]. The Lagrange points L4 and
L5 each form an equilateral triangle with the two primaries. They are stable when

µ satisfies the inequality µ < µ1 = 1
2 (1−

√
69
9 ) which is the case for the Earth-Moon

system. The influence of the propulsion provided by the thrusters on the motion
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Figure 3. A representation of the accuracy of the model. The
trajectory of each TCO in the database is integrated, for 30 days
before and after its rendezvous point, using the restricted three-
body model. The results are then compared to the original data
from the database [23], which was obtained using a more sophis-
ticated model. The quadratic of best fit (in a least squares sense)
is plotted to represent the relationship between the model we used
and the supplied data.

of the spacecraft is modelled by adding control terms in the equation (10). The
motion of the spacecraft is therefore completely described by the control system

ẍ− 2ẏ =
∂V

∂x
+ u1, ÿ + 2ẋ =

∂V

∂y
+ u2, z̈ =

∂V

∂z
+ u3. (12)

where u(.) = (u1(.), u2(.), u3(.)) is the control. The constraint on the thrust trans-
lates into the domain of control as U = BR3(0, ε) where ε is the maximum thrust.
Using the phase space variable q = (x, y, z, ẋ, ẏ, ż), the system (12) can be rewritten

q̇ = F0(q) + F1(q)u1 + F2(q)u2 + F3(q)u3 (13)

where

F0(q) =



q4
q5
q6

2q5 + q1 − (1− µ) q1+µ

((q1+µ)2+q22+q
2
3)

3
2
− µ q1−1+µ

((q1−1+µ)2+q22+q23)
3
2

−2q4 + q2 − (1− µ) q2

((q1+µ)2+q22+q
2
3)

3
2
− µ q2

((q1−1+µ)2+q22+q23)
3
2

−(1− µ) q3

((q1+µ)2+q22+q
2
3)

3
2
− µ q3

((q1−1+µ)2+q22+q23)
3
2
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F1(q) =


0
0
0
1
0
0

 , F2(q) =


0
0
0
0
1
0

 , F3(q) =


0
0
0
0
0
1

 .

Computing time-minimal transfer from the geostationary orbit to a given TCO is
then equivalent to solving the optimal control problem

q̇ = F0(q) + F1(q)u1 + F2(q)u2 + F3(q)u3
minu(·)∈BR3 (0,ε)

∫ tf
t0
dt

q(0) ∈ Og, q(tf ) = qrend

. (14)

where Og is the geostationary orbit described as a 1-sphere embedded in R3, qrend is
the imposed final condition representing the position and velocity at which we want
the spacecraft to rendezvous with the TCO and ε is the control bound corresponding
to the maximal thrust allowed by the spacecraft engines.

4.2. Methodology. Applying the Pontryagin Maximum Principle, we find that,
in the so-called normal case p0 6= 0, every solution q(.) of (14) is the projection of
an extremal curve z(.) = (q(.), p(.)) solution of the Hamiltonian system

q̇(t) =
∂H

∂p
, ṗ(t) = −∂H

∂q
(15)

where

H(q, p, u) = −1 +H0(q, p) + ε((u1H1(q, p) + u2H2(q, p) + u3H3(q, p))

with Hi(q, p) = 〈p, Fi(q)〉, i = 1, 2, 3. From the maximization condition, we find
that, if (H1, H2, H3) 6= (0, 0, 0), then the control u(.) satisfies

ui(q, p) =
Hi(q, p)√

H2
1 (q, p) +H2

2 (q, p) +H2
3 (q, p)

, i = 1, 2, 3. (16)

Plugging into H gives the expression of the real Hamiltonian

Hr(q, p) = −1 +H0(q, p) + ε((H2
1 (q, p) +H2

2 (q, p) +H2
3 (q, p))

1
2 )

whose the corresponding extremals, solutions of the system

q̇(t) =
∂Hr

∂p
, ṗ(t) = −∂Hr

∂q
(17)

are called order zero extremals. The final time being free, Hr is identically zero
on [0, tf ], see [32], and the computation of time-minimal order 0 extremal transfers
can therefore be carried out by solving the shooting equation associated with the
function

S : R7 −→ R7

(p0, tf ) −→
(

q(tf )− qrend
Hr(q(tf ), p(tf ))

)
.

Let us mention however that this method may provide higher order extremal trans-
fers along which appear singularities. Indeed, it can be proved, see [9], that such
singularities are isolated and only occur a finite number of times. The variable
stepsize algorithm, provided by the software Hampath, may or may not handle
such singularities while computing of extremal transfers. The initial position and
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velocity on the geostationary orbit are set as q0 = (0.0947, 0, 0, 0, 2.8792, 0), the
mass of the spacecraft being assumed constant to 350 kg. Our computations fol-
low the hereafter principle. First, we compute a collection of three-dimensional
1N-thrust time-optimal transfers to the 100 TCO coming within 0.1 Lunar units of
the point L1 with the smallest absolute vertical coordinate z, choosing as the ren-
dezvous location the point they are nearest to L1. Indeed, as explained in details in
[17], those three-dimensional time-optimal extremal curves can be computed by us-
ing the two-dimensional time-optimal extremal curves from the geostationary orbit
to the projection of the selected TCO on the plane of motion of the Moon around
the Earth as an initial guess for the shooting method to converge. Let us mention
that these two-dimensional extremal curves have been previously computed by ini-
tializing a shooting method with a reference time-optimal transfer to the point L1

provided in [31]. The first conjugate time along every three-dimensional generated
extremal is computed to ensure, according to the second order condition, that it is
locally time-optimal (see Theorem (3.2)).
This collection of one hundred 1N-thrust time-optimal transfers is then used to set
up a database of initial guesses to compute 1N-thrust time-minimal transfers to the
remaining TCOs. For a given TCO denoted T CO1, we define as the rendezvous
location the point q1,rend at which T CO1 is nearest the point L1. We then search
among the database of initial guesses for the time-minimal transfer which realizes a
rendezvous with a TCO denoted T CO2 at the location denoted q2,rend such that the
Euclidean norm ‖q1,rend−q2,rend‖2 is minimized. This transfer is used as the initial
guess for the shooting equation to compute a time-minimal extremal curve to ren-
dezvous with T CO1, and the first conjugate point along this extremal is computed
to guarantee its local time-optimality. The database of initial guesses is afterwards
updated with this new time-minimal transfer. If either the shooting method or the
second order condition fails, T CO1 is placed back in the set of TCO for which no
transfer has been calculated and the algorithm will retry to compute a time-minimal
transfer to T CO1 after having attempted computing time-minimal transfers to the
other TCO and expanded the database of initial guesses. This method allows us
to successfully realize rendezvous missions for more than 96% of the TCOs with a
maximal thrust of 1N. See section 5 below for more results.
Once a 1N-thrust time-minimal transfer has been computed to a given TCO, a
discrete homotopic method on the parameter ε, can then be used to determine so-
lutions of the shooting function for smaller control bounds, and thus, lower thrust
extremal curves from the geostationary orbit to qrend. Indeed, the higher the maxi-
mum control bound, the shorter the corresponding transfer time and the more easily
the Newton algorithm converges to a solution of the shooting method, which makes
this problem well suited for a continuation method. At each step of the continua-
tion algorithm, the first conjugate time along every generated extremal is computed
to ensure both the convergence of the smooth continuation method and the local
time-optimality of the extremal curve.
Most of the numerical methods described in this section have been performed using
the software HAMPATH : on solving optimal control problems by indirect and path
following methods, http://apo.enseeiht.fr/hampath/ .

5. Results. Using the methodology described above, 1N transfers were found to
16,352 of the 16,923 TCOs. The successful 1N transfers were used as starting points
to find 250 transfers with lower maximum thrust bounds (between 0.1N and 1N).
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Figure 4. A histogram representing the distribution of 1N trans-
fer times in days.

The computations for the 1N transfers took nine days to run on a single laptop.
The continuation computations took much longer, at about approximately 30-45
minutes per TCO, again running on a single laptop.

5.1. 1N transfers. Our methodology successfully determined transfers to 96.6% of
the rendezvous points we attempted to transfer to. The shortest identified transfer
time was 9.11 days, and the longest was 32.10 days. The mean transfer time was
found as 20.12 days, and the median transfer time was 19.92 days. Figure 4 displays
the distribution of 1N transfer times.

Illustrations of transfers are shown in the next section, in Figures 7-11, plot (b),
for five distinct TCO. To represent our results we use a three-dimensional view
as well as two-dimensional projection. The five distinct 1N-transfers illustrate the
variation in the TCO’s orbits. It can be observed, for instance, that the shortest
time transfer of the five displayed is obtained for TCO #16 which revolves around
the Earth a greater number of times. The reader should keep in mind that the
velocity of the TCO at qrend plays an important role in the transfer. We plan on
conducting a more detailed analysis in future work.

We provide a brief preliminary analysis of the TCO for which we did not identify
a transfer. Figure 5 demonstrates that the rendezvous points for which we did not
obtain transfers to were typically close to Earth, with relatively high velocities.
Figure 6 gives a histogram of the number of rendezvous points with respect to their
distance from Earth, sorted by rendezvous points we did and did not find transfers
for. It is clear from the figures that most of the rendezvous points that we did not
find transfers to are within 0.2LD of Earth, with velocities upwards of 0.6LD/d. The
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Figure 5. A scatterplot representing the rendezvous points which
we did (gray) and did not (black) obtain transfers to.

high velocities of the rendezvous points which were unreachable with our method
seem to be unreachable because of the spacecraft’s thrust constraint. We expect
that with a higher admissible thrust we could reach 100% of the TCO using our
methodology.

5.2. Continuations to lower thrusts. For a random selection of the 250 suc-
cessful 1N transfers, we used a discrete continuation method to search for transfers
with a maximum thrust of less than 1N. For each TCO from this random selection,
we recorded the lowest maximum thrust bound εmin for which a successful transfer
was found. We stress that this was a first approach to lowering the maximum thrust
bound, and that these results should be viewed as a first example of what is possible
using a simple discrete continuation method.

The lowest εmin found for any transfer was 0.1316N to TCO # 16 (see Figure
10, c) with a transfer time of 103.3 days. For two of the 250 TCO, εmin = 1N,
meaning the continuation was unable to lower the maximum thrust bound from 1N.
The mean value was εmin = 0.4441N, and the median value was εmin = 0.4101N.
Transfer data for the 1N and εminN transfers for the sample of 20 TCOs introduce
in Table 1 are presented in Table 2. Notice that TCO #4 has the second highest
velocity at qrend (second to TCO #3, which could not be reached even with a 1N
bound), has a significant higher εmin than the other TCOs. It can also clearly be
observed that the higher the thrust the shorter the duration of the transfer. For
comparison, we present in Figures 7-11 illustrations of five successful 1N transfers,
and their corresponding εminN transfers. Each transfer is displayed in a three-
dimensional plot, as well as an overhead two-dimensional plot. The corresponding
transfer times are listed in the captions.

In case it is of interest to the reader, for TCO #16 we provide some specific
details of our numerical results. All values are given in the rotating reference frame,
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Figure 6. Histogram showing the distances from rendezvous
points to Earth. The data is sorted into two categories: rendezvous
points we found transfers to (light gray), and those we did not
(dark gray).
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TCO t1f t1c trend − t1f εmin tεmin
f tεmin

c trend − tεmin
f

# (d) (d) (d) (N) (d) (d) (d)
1 20.88 ∞ 159.65 0.33 50.87 94.26 129.66
2 23.11 ∞ 216.08 0.25 76.76 ∞ 162.44
3 - - - - - - -
4 17.76 21.75 16.04 0.73 25.28 23.63 8.52
5 18.91 28.28 2.35 0.39 43.26 54.58 -22.00
6 20.15 ∞ 76.87 0.46 44.76 215.87 52.27
7 22.59 137.14 5.63 0.36 66.68 53.74 -38.46
8 21.27 ∞ 88.17 0.38 52.64 1,362.74 56.80
9 19.21 29.37 132.77 0.29 48.96 59.87 103.01
10 21.78 ∞ 240.20 0.25 79.58 73.03 182.39
11 22.73 ∞ 58.45 0.24 74.76 96.28 6.42
12 18.85 27.61 59.93 0.33 60.14 73.19 18.64
13 19.53 25.47 322.98 0.34 56.08 66.50 286.42
14 18.60 22.62 63.40 0.46 37.36 43.77 44.64
15 17.72 29.47 97.17 0.59 26.82 42.74 88.07
16 13.40 20.07 295.06 0.13 103.31 121.58 205.15
17 20.46 24.54 152.78 0.84 28.88 29.33 144.36
18 19.97 152.95 89.97 0.43 46.03 70.98 63.91
19 20.28 29.69 401.52 0.25 75.81 77.33 345.99
20 17.52 1,564.12 63.67 0.56 29.29 152.65 51.89

Table 2. Transfer statistics for a sample of 20 TCO from the
database [23]. Transfers were found for each of the 20 TCO except
TCO #3. For the 19 successful, column 2 gives the 1N transfer
times t1f in days, and column 3 gives the corresponding conjugate

times t1c in days. Column 4 gives the difference between the TCO
time to rendezvous and the transfer time. Note that a negative
value in this column means the transfer would be impractical, since
we’d have to start the transfer before the TCO was captured (and
therefore, likely before it was detected). A continuation method
was used to obtain transfers to the same rendezvous points using
lower thrusts. Column 5 represents the lowest thrust bound εmin in
newtons for which a transfer was found. Columns 6-8 are analogous
to columns 2-4, but for the transfer with maximum thrust εmin.
Note that a conjugate time marked ∞ means that no conjugate
times were found within 100 times the transfer time.

including the time units for the final time.

qrend =


0.7692503
−0.05583765

0.1354263
1.0486000
−0.2893604
0.3826522

 , p0 =


−52.524900
−12.281740
21.225210
−0.475141
−2.105559
−0.449771

 , tf = 23.75782.
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Figure 7. (TCO #1) Locally time-minimal transfers associated
with two different maximum thrusts – 1N (top) and 0.33N (bot-
tom). Each transfer is displayed with a three dimensional view
(left) as well as a overhead two-dimensional view (right). The given
legend is applicable to all four plots.
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Figure 8. (TCO #9) Locally time-minimal transfers associated
with two different maximum thrusts – 1N (top) and 0.29N (bot-
tom). Each transfer is displayed with a three dimensional view
(left) as well as a overhead two-dimensional view (right). The given
legend is applicable to all four plots.
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Figure 9. (TCO #10) Locally time-minimal transfers associated
with two different maximum thrusts – 1N (top) and 0.25N (bot-
tom). Each transfer is displayed with a three dimensional view
(left) as well as a overhead two-dimensional view (right). The given
legend is applicable to all four plots.
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Figure 10. (TCO #16) Locally time-minimal transfers associated
with two different maximum thrusts – 1N (top) and 0.13N (bot-
tom). Each transfer is displayed with a three dimensional view
(left) as well as a overhead two-dimensional view (right). The given
legend is applicable to all four plots.
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Figure 11. (TCO #19) Locally time-minimal transfers associated
with two different maximum thrusts – 1N (top) and 0.25N (bot-
tom). Each transfer is displayed with a three dimensional view
(left) as well as a overhead two-dimensional view (right). The given
legend is applicable to all four plots.
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6. Conclusion and Future Work. The work presented here is extremely encour-
aging to pursue further the analysis of rendezvous missions to temporarily-captured
natural Earth satellites, or so-called mini-moons. Based on our methodology and
techniques from geometric optimal control, we demonstrate the capability to the-
oretically design low-thrust transfer missions from the geostationary orbit to more
than 96% of over sixteen-thousand meteoroids which have theoretically been clas-
sified as temporarily captured, in [23]. Refinement of our techniques and model
is however necessary for such missions to become a reality. Indeed, first a deeper
analysis of the model should be conducted. It has been observed that for some
TCOs the approximation with the restricted three-body problem is not satisfac-
tory. It is unknown at this stage what triggers the discrepancy in these cases, and
models with an ellipsoidal motion for the Moon or including additional planets will
be tested. The location of the rendezvous point of a TCO and the spacecraft is
also a major component of our future plan of work. The TCO might actually come
closer to the Earth during its capture than it is when closest to the L1 point, which
therefore suggests that other rendezvous point selection strategies might work bet-
ter. Additionally as mentioned in this paper, the velocity at the rendezvous point
should not be neglected when designing the mission. Finally, the departure point
of the spacecraft on the geostationary orbit might as well influence the mission and
alternate choices should be studied.

This work opens the door to many interesting and challenging questions, such as
catching and grabbing the TCO, followed by a return mission back to Earth.
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