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Abstract In this paper we focus on time-optimal transfers from a geostationary
orbit to a sample of Natural Earth Satellites (NES) for a spacecraft using low thrust
propulsion. Based on prior work we first analyze rendezvous missions in a vicinity
of the Earth-Moon L1 equilibrium point, using a range of low thrusts from 0.2N to
1.0N. As a first approach, we approximate the dynamics of the spacecraft subject to
the gravitational field of the Earth and the Moon by the planar restricted three-body
model, before considering the spatial restricted three-body model. The time optimal
control strategies are calculated using classical indirect methods of optimal control
based on the Pontryagin Maximum Principle. We verify the local optimality of the
corresponding trajectories using second order conditions.
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1 Introduction

In this paper, we present a first approach to the design of low-thrust time-minimal
orbital transfers to temporarily-captured natural Earth satellites (NES). By definition
a NES is a celestial body that orbits the Earth. More precisely, a natural object in
space is defined as temporarily-captured by a planet (or any body orbiting the Sun,
including the Moon) by requiring simultaneously, see [13], that

1. the planetocentric Keplerian energy Eplanet < 0,
2. the planetocentric distance is less than three Hill radii for the planet in question

(e.g., for the Earth 3RH,⊕ ∼ 0.03 AU

In addition, for an object to be considered a temporarily-captured orbiter (TCO),
we require that it makes at least one full revolution around the planet in a co-rotating
frame while being captured (the line from the planet to the Sun is fixed in this
coordinate system) [13]. As a convention for this paper, we will always be referring
to TCO which orbit the Earth (though the definition is stated more generally), and
so, in this paper, TCO will be equivalent to temporarily-captured NES.

Work described in Granvik et. al. (2012) [13] details a selection process of 10
million “test-particles” in space, whose trajectories are integrated in order to deter-
mine which qualify as TCO. Of the 10 million test-particles, they find that 18,096
become TCO. This characterization of the TCO population acts as a key precur-
sor to our work. It is from this integrated TCO database of over eighteen-thousand
meteoroids that we select our orbital transfer targets.

Statistically, it can be shown that at any given time there is at least one 1-m-
diameter TCO orbiting the Earth [13]. There are several reasons why the TCO are
appealing targets, in addition to the fact that transfers to TCO have otherwise been
unexplored. Primarily, the fact that TCO are temporarily in orbit around Earth pro-
vides us with several luxuries: First, there is already much documentation regarding
two of the primary bodies which act on the TCO near Earth– the Earth and the
Moon. Second, an orbiting object allows more time for detection, planning, and ex-
ecution of a space mission than an object which just flies by, (i.e. does not complete
an orbit). Note that the average number of revolutions for a TCO is 2.88±0.82 [13].
More reasons the TCO are attractive targets include their closeness to Earth, making
for a more cost-effective and time-effective mission, than compared to a deep-space
mission (e.g. the 7-year Hayabusa mission), and their small size, which introduces
the possibility of returning with the entire TCO to Earth. A final reason that TCO
make interesting targets is evident when examining figures of the trajectories of
some of the TCO. While some follow what we will loosely define as regular orbits
(i.e. elliptical, planar), others follow very irregular orbits (i.e. scattered, non-planar).
This diversity of orbit trajectories is appealing (especially the irregular trajectories),
since we can really test the limits of our transfer computation methods, and develop
experience performing maneuvers that otherwise have not been completed.

In space navigation, we define an orbital transfer as the use of propulsion systems
to change the orbit of a spacecraft from some initial orbit to a final orbit. Throughout
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the paper “transfer” will always mean orbital transfer. The terms “engines” and
“thrusters” will always refer to the propulsion system of our spacecraft.

For this work, we assume that our spacecraft starts on a geostationary orbit. The
destination orbits for our transfers will be orbits of TCO. In this paper we iden-
tify time-minimal transfers, as opposed to optimizing other typical costs, such as
fuel-consumption. We do this for several reasons: Computationally, this is a logi-
cal first step toward identifying fuel-efficient solutions in future work. Practically,
the lifespans of TCO are typically short (286±18 days) [13] which suggests time-
minimization may be important in the actual development of a spacecraft mission.
It is also worth noting that the time of capture would not necessarily be equal to the
time of detection, meaning the lifespan of the TCO should be viewed as an upper
bound on the amount of time available to complete a transfer. The detectability of
TCOs is currently being studied.

The method used to find solutions in this work includes modeling the dynamics
of our spacecraft using the restricted three-body problem. Indeed several TCO or-
bits are quite accurately approximated by trajectories of the well-known restricted 3-
body problem [18] during an interval of time when they can be assumed to be evolv-
ing in the Earth-Moon system. Moreover, many of these TCO orbits pass through a
small vicinity of the Lagrangian point L1 where the gravitational fields of the Earth
and the Moon compensate each other. Let us recall that the characteristics of the
natural dynamics in the neighborhood of the Lagrangian points have already been
investigated in depth to design low-energy space transfers, see for example [12, 15]
Therefore, we chose to rendezvous with each TCO when the Euclidean distance
from the L1 to the TCO is at its smallest.

Our computations of time-minimal transfers toward orbits of TCO are based on
indirect methods in optimal control. The optimal transfers are necessarily projec-
tions of extremal curves (q(t), p(t)) belonging to the cotangent bundle of the phase
space. These extremal curves are solutions of the Hamiltonian system derived from
the application of the Pontryagin Maximum Principle [17], and can be computed by
means of a shooting method. This work relies on the two-dimensional high-thrust
extremal trajectory from the geostationary orbit to the equilibrium point L1 of the
Earth-Moon system (described in [16]) as the reference transfer used to initialize
the shooting method. More precisely, let the vector q(t) represent the position and
velocity of our spacecraft after time t. We set the initial condition q0 on a geostation-
ary orbit, and a terminal condition q f . The task is to find the so-called initial adjoint
vector p0 and final time t f , such that the projection of the corresponding extremal
curve started from (q0, p0) and evaluated at t f is the required terminal condition; i.e.
q(t f ) = q f . This can be achieved using a Newton method, provided that we are able
to determine an initial guess for the value of p0 which gives convergence of the algo-
rithm. The algorithm is more robust to the initial guess for higher maximum thrust
constraints. So, to obtain low-thrust transfers a continuation method is performed
by using the maximum thrust allowed by the spacecraft engines as the homotopic
parameter. The local optimality of the computed extremal is then verified using a
second order condition, connected to the concept of conjugate points [1, 6, 8]. Such
computations are done using the Matlab package Hampath [11].
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To summarize, we provide collections of low-thrust orbital transfers from a geo-
stationary orbit to a sample of orbits of TCO. More specifically, we compute two-
dimensional and three-dimensional locally-time-optimal transfers using low propul-
sion for rendezvous with TCO in a small vicinity of the Earth-Moon Lagrangian
point L1. In addition to providing the first numerical examples of space transfers
to TCO, our computations expand on the work initiated in [4, 16] to apply funda-
mental tools from optimal control theory to design optimal three-dimensional space
transfers towards non-Keplerian target orbits.

2 The Model

In this section, we describe the selection of TCO as target for our spacecraft mis-
sion, and we introduce the restricted 3-body problem to model the dynamics of our
system.

2.1 Temporarily-Captured Orbiter

As stated in the introduction, our goal is to compute locally time-optimal transfers
for a low-thrust spacecraft from the geostationary orbit to a sample of TCO. In this
section we make explicit the motivation for our target selection for our transfers.

Figure 1 shows the orbits of six TCO from the Granvik et. al. database [13],
which display a variety of orbit regularity. For this work, we approach transferring
to a TCO by selecting a specific rendezvous point along that TCO’s orbit as the
destination for a transfer. By “rendezvous” we mean that the spacecraft must match
the position and velocity of the TCO at the selected point.

The specific rendezvous point we select on a given TCO’s orbit is based on results
from [16]. In that paper, two-dimensional transfers using the restricted three-body
model are completed to the Earth-Moon Lagrangian point L1. There is also evidence
in [16] that the L1 point serves as a natural gateway to other transfer destinations,
such as a parking orbit around the Moon. For these reasons we choose in this first
approach to the problem to focus on rendezvous near the L1 point.

Analysis of the TCO data shows that 12,586 TCO come within 1 Lunar Distance
(LD) of the L1 point, and that 383 come within 0.1 LD of the L1 point. We choose
to attempt our first transfers to a sample of 100 of these 383 TCO. One Lunar Dis-
tance (LD) is defined as 384,400 km, an approximate average distance between the
Earth and the Moon. The particular point along each TCO trajectory we set as our
destination is the point at which the Euclidean distance from the TCO to L1 is the
smallest. Since the transfers in [16] were done in two-dimensions, the 100 selected
TCO rendezvous points were those of the 383 closest which had the smallest abso-
lute z-coordinates (|z| ≤ 0.0166 LD, for all of the selected 100 TCO rendezvous).
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(a) TCO 57

−1
−0.5

0
0.5

−7

−6

−5

−4

−3

−2

−1

0

1

−0.5

0

0.5

q
1
 (LU)

q
2
 (LU)

q 3 (
LU

)

(b) TCO 5481
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(c) TCO 10585
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(d) TCO 11249
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(e) TCO 14487
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(f) TCO 16803

Fig. 1 Example orbits of six distinct TCO with a variety of regularity, viewed in the inertial frame.
The Earth is the large circle, and the orbits of the Moon and L1 point are the thick black outer and
inner rings, respectively. The thin black curves are the paths of the TCO, from point of capture
(marked as a triangle) to point of escape (marked as an X).



6 Authors Suppressed Due to Excessive Length

Table 1 display data for 21 TCO for which succesful transfers using the method
described in this article have been computed.

TCO # Filename dE(qrend −L1) trend (d) Tcapt (d) norbits
57 ’NESC000008fB’ 0.0736 200.8 285.6 1.3805
651 ’NESC00001QEL’ 0.0644 32.9 115.8 -1.1862
2778 ’NESC000072MS’ 0.0249 118.8 147.7 1.5195
3813 ’NESC00009lwe’ 0.0540 133.3 214.4 1.4137
3867 ’NESC00009paY’ 0.0617 65.2 222.4 1.3699
3955 ’NESC00009vo1’ 0.0392 46.8 89.6 -1.1765
4227 ’NESC0000aEqt’ 0.0208 66.9 2824.8 52.4112
4980 ’NESC0000csxH’ 0.0400 78.8 377.6 -2.1725
5481 ’NESC0000dpsc’ 0.0613 326.7 373.4 5.1306
7548 ’NESC0000iVXy’ 0.0406 78.6 216.6 1.3947
7628 ’NESC0000j7Zq’ 0.0197 141.6 162.1 1.4688
8962 ’NESC0000mCKB’ 0.0802 84.2 401.0 5.0309
10585 ’NESC0000qeLr’ 0.0862 64.2 206.5 1.3799
10747 ’NESC0000qScl’ 0.0246 62.5 128.3 -1.2733
10979 ’NESC0000rEjx’ 0.0319 59.2 188.9 1.3092
11249 ’NESC0000s1QJ’ 0.0339 75.7 562.2 7.4318
12028 ’NESC0000tzdR’ 0.0235 438.4 454.0 -1.0241
13933 ’NESC0000yPwy’ 0.0980 25.2 478.4 -1.1105
14487 ’NESC0000AIeg’ 0.0145 131.9 185.5 1.3544
16519 ’NESC0000EZv7’ 0.0829 921.3 1217.9 12.4351
16803 ’NESC0000Fpds’ 0.0853 244.8 826.5 8.3719

Table 1 A table containing some data for each TCO that we completed a 0.2N transfer to (either
two or three dimensional). Column 3 gives the Euclidean distance dE(qrend −L1) in LD between
qrend and L1, and column 4 gives the time trend in days after initial capture that qrend occurs. Column
5 displays the total amount of time Tcapt in days that the TCO is captured, and column 6 gives the
number of orbits norbits the TCO makes around the Earth.

Though we choose the rendezvous point to be near L1 to use knowledge derived
from a previous study, an obvious extension for future work would be to select
rendezvous points elsewhere on the TCO trajectories.

2.2 The circular restricted 3-body problem

The classical model used to approximate the motion of a spacecraft subject to the
respective gravitational fields of the Earth and the Moon is the well-known restricted
3-body problem. The two main bodies, called primaries and denoted by their mass
M1 (Earth) and M2 (Moon), are assumed to be a distance of one unit of length
from each other and to have a total mass normalized to 1. They are revolving circu-
larly around their center of mass G under the influence of their mutual gravitational
attraction, with an angular velocity of 1. This assumption is reasonable as a first
approximation to describe the Earth-Moon system since the eccentricity and incli-
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nation of the Moon’s orbit around the Earth are small (0.0549o and 5.145o to the
ecliptic, respectively) The third body (the spacecraft), of negligible mass and de-
noted M, evolves in the 3-dimensional space without affecting the motion of the
primaries. Let us note also that, in our problem, a TCO is assumed to be a point of
negligible mass which we want the spacecraft to rendezvous with. Thus, our final
conditions are that the spacecraft and the TCO share the exact same position and
velocity at the final time of the transfer.

Let us denote µ = M2
M1+M2

∈ [0, 1
2 ] the reduced mass of the problem and use a dy-

namical coordinates system centered at G, rotating with an angular velocity 1 so that
the primaries M1 and M2 are respectively located at the fixed locations (−µ ,0,0)
and (1−µ ,0,0). The position of an object of negligible mass evolving in the Earth-
Moon system at time t is denoted (x(t),y(t),z(t)). The equations of motion of the
object derived from Newton’s laws, are thus written [18]

ẍ−2ẏ =
∂V
∂x

, ÿ+2ẋ =
∂V
∂y

, z̈ =
∂V
∂ z

(1)

where −V is the mechanical potential defined by

V =
x2 + y2

2
+

1−µ
ρ1

+
µ
ρ2

+
µ(1−µ)

2
. (2)

with ρ1 =
√(

(x+µ)2 + y2 + z2
)
, ρ2 =

√(
(x−1+µ)2 + y2 + z2

)
representing the

distances from the spacecraft to the primaries. The Hamiltonian formalism [18] of
the system is obtained by setting a new system of coordinates

v1 = x, v2 = y, v3 = z, w1 = ẋ− y, w2 = ẏ+ x, w3 = ż,

with the corresponding Hamiltonian function

H0(v,w) =
1
2
(w2

1 +w2
2 +w2

3)+w1v2 −w2v1 −
1−µ

ρ1
− µ

ρ2
(3)

being the only known first integral of the motion. In the Lagrangian formulation,
equation (3) becomes

E(x,y,z, ẋ, ẏ, ż) =
ẋ2 + ẏ2 + ż2

2
−V (x,y,z)

which is therefore constant along the solutions of the system (1). As a consequence
the solutions of system (1) are constrained to be in the level sets given by

M(e) = {(x,y,z, ẋ, ẏ, ż) | E(x,y,z, ẋ, ẏ, ż) = e}

where the energy e is a real number. The Hill’s regions are the projections of these
level sets on the position space
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H(e) = {(x,y,z) | V (x,y,z)+ e ≥ 0}.

System (1) has five equilibrium points defined as the critical points of the po-
tential V . They are all located in the (x,y) plane and divided in two different types.
The Euler points, denoted L1, L2 and L3, located on the line y = 0 defined by the
primaries, are non-stable, according to the Arnold’s stability theorem [3]. The La-
grange points L4 and L5 each form an equilateral triangle with the two primaries.
They are stable when µ satisfies the inequality µ < µ1 =

1
2 (1−

√
69
9 ) which is the

case for the Earth-Moon system. See Figure 2 for an illustration of the equilibrium
points

Fig. 2 The five equilibrium points of the Earth-Moon system, displayed in the rotating frame of
the restricted three-body problem. The primaries E and M represent respectively the Earth and the
Moon.

The topology of the Hill’s region [18] depends on the energy e. The energy levels
ei corresponding to the critical points Li satisfy e1 < e2 < e3 < e4=e5 and therefore
define five phase portraits for the evolution of the object with respect to system (1)
illustrated in figure 4.

This problem can be simplified by considering the planar restricted 3-body prob-
lem in which the motion is supposed to be restrained to the plane {z = 0}. This
model is simply obtained by removing the z coordinate from the expression of the
potential −V , which doesn’t affect the critical levels involved in the modifications
of the Hill’s regions of energy, nor the locations of the equilibrium points.

The controlled restricted 3-body problem in the rotating frame, formulated by
adding control terms representing the thrust of the spacecraft in the equation of the
system (1), is simply written
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Fig. 3 Portraits of the Hill’s regions with respect to e when µ =1.2153e-2 (Earth-Moon system).
In every picture, the left and right black crosses respectively represent the Earth and the Moon. The
regions of motion are displayed in gray.

ẍ−2ẏ =
∂V
∂x

+u1, ÿ+2ẋ =
∂V
∂y

+u2, z̈ =
∂V
∂ z

+u3. (4)

In this situation the Hamiltonian is given by

H(v,w) = H0(v,w)− v1u1 − v2u2 − v3u3. (5)

In this paper, we focus on minimizing the transfer time from the geostationary
orbit to orbits of temporarily captured objects in the Earth-Moon system, when a low
maximum thrust is allowed by the spacecraft’s engines. The control u = (u1,u2,u3)
represents then the impact of the engine on the spacecraft acceleration along every
direction and the norm ‖u‖ is the thrust. As a result, the mathematical formulation of
our problem is to compute solutions of the system (4) which minimize the transfer
time expressed as an integral cost by
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min
u(·)∈BR3 (0,ε)

∫ t f

t0
1 dt (6)

where ε is the maximum thrust allowed by spacecraft’s engines. Let us notice that,
as for the Kepler problem, see [10], the spacecraft mass variation may be modelled
dividing each component ui, i = 1, 2, 3, by the spacecraft mass m(t) at time t and
considering the equation ṁ = −δ‖u‖. This will not be taken into account in the
work presented in this paper.

3 Indirect methods in optimal control

The indirect methods in optimal control provide numerical techniques to com-
pute solutions of optimal control problems, based on geometric considerations. We
briefly recall in this section their principle and the fundamental results they are de-
rived from.

3.1 The Pontryagin Maximum Principle

Let M and U be two smooth manifolds of respective dimensions n and m and con-
sider a general control system written

q̇(t) = f (q(t),u(t))
minu(.)

∫ t f
0 f 0(q(t),u(t))dt

q(0) = q0 ∈ M0, q(t f ) ∈ M1

(7)

where f : M ×U −→ T M and f 0 : M ×U −→ R are smooth, u(.) is a bounded
measurable function defined on [0, t(u)] ⊂ R+ and valued in U , t f < t(u) and M0
and M1 are two subsets of M. A control u(.) is said to be an admissible control on
[0, t f ] if its corresponding trajectory q(.) satisfies q0 ∈M0 and q(t f )∈M1. According
to the Pontryagin Maximum Principle [17], for an admissible control u(.) to be
optimal, there exists a non-positive real p0 and an absolutely continuous map p(.) on
[0, t f ] called the adjoint vector such that p(t) ∈ T ∗

q(t)M, (p0, p) 6= (0,0) and, almost
everywhere on [0, t f ], the following holds

q̇ =
∂H
∂ p

(q, p, p0,u), ṗ =−∂H
∂q

(q, p, p0,u), (8)

where H is the pseudo-Hamiltonian function

H : T ∗M×R∗
−×U −→ R

(q, p, p0,u)−→ p0 f 0(q,u)+< p, f (q,u)> .
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The optimal control must also satisfy the maximization condition

H(q(t), p(t), p0,u(t)) = max
v∈U

H(q(t), p(t), p0,v) (9)

almost everywhere on [0, t f ]. This condition implies in particular that H is identically
zero if the final time t f is not fixed. Finally, if M0 (resp. M1) is a regular submanifold
of M, the transversality condition

p(0)⊥ Tq(0)M0 (resp. p(t f )⊥ Tq(t f )M1). (10)

has to be satisfied. A solution (q, p, p0,u) of equations (8) and (9) is called an ex-
tremal. In the following we focus on solutions with p0 6= 0 and we can therefore
assume p0 =−1. When the control domain U is assumed to be a smooth manifold,
we can identify U locally to Rm and the maximization condition becomes ∂H

∂u = 0.

Assuming then that ∂ 2H
∂u2 is negative definite along the extremal, a straightforward

application of the implicit function theorem shows that extremal controls are actu-
ally smooth feedback functions of the state and adjoint vectors in a neighborhood
of u(.): ur(t) = ur(q(t), p(t)). The pseudo-Hamiltonian H can thus be written as a
real Hamiltonian function Hr(q, p) = H(q, p,ur(q, p)) and any extremal trajectory
can be expressed as a solution z = (q, p) of the Hamiltonian system{

ż =
−→
Hr(z(t))

z0 = (q0, p0)
(11)

where
−→
Hr = ( ∂Hr

∂ p ,− ∂Hr
∂q ) is the Hamiltonian vector field associated with Hr and

p0 = p(0). Let us mention that, in the presented work, the control domains con-
sidered are the closed balls of R2 and R3 with radius ε , which are not manifolds.
However, in both cases, extremal controls turn out to belong to the sphere of radius
ε almost everywhere on [0, t f ] and can still be written, almost everywhere, as feed-
back functions of the state and adjoint vectors, leading to the formulation of a real
Hamiltonian function Hr, see sections 4.1 and 5.1 for details.

3.2 Shooting function

The goal of the indirect method is to determine numerically extremals that satisfy the
boundary conditions q(0) = q0 ∈ M0, q(t f ) ∈ M1 and the transversality conditions.
The difficulty is to determine the initial value of the adjoint vector p0 such that the
corresponding solution of (11) meets the conditions. We rewrite the boundary and
transversality conditions under the form R(z(0),z(t f )) = 0. Admissible extremals
are now solutions of {

ż =
−→
Hr(z(t))

R(z(0),z(t f )) = 0.
(12)



12 Authors Suppressed Due to Excessive Length

When the transfer time t f is free, as in the time optimal case, solving the boundary
value problem is then equivalent to solve the shooting equation. More precisely, this
entails to find a zero of the so-called shooting function [7] S defined by

S : (p0, t f )−→ R(z0,zt f ). (13)

In the free final time situation, the condition Hr = 0 is added to the function R.
Notice that by construction S is a smooth function, and we can use a Newton type
method to determine its zeroes.

3.3 Smooth continuation method

Newton methods are known to be very sensitive to an initial guess. The smooth con-
tinuation method [2, 19] is an efficient way to overcome this difficulty. The idea is
to connect the Hamiltonian Hr to an Hamiltonian H0, whose corresponding shooting
equation is easy to solve, via a parametrized family (Hλ )λ∈[0,1] of smooth Hamilto-
nians. The algorithm is then divided into the following steps:

1. Solve the shooting equation associated with H0;
2. Set up a discretization 0=λ0, λ1,. . . , λN=1 and solve iteratively the shooting equa-

tion associated with Hλi+1 by using as initial guess the solution of the shooting
equation corresponding to Hλi .

3. The solution of the last shooting equation associated with HλN is then a zero of
the shooting function S.

3.4 Second order condition

The notion of conjugate points [6] plays a major role in our work for two reasons.
First, the notion of conjugate points is at the origin of the so-called second order
optimality condition which is a sufficient condition for an extremal to be locally
optimal. Second, the non existence of a conjugate point along the solution of the
continuation method for each λi guarantees the convergence of the algorithm, see
[9, 14]. More precisely, focusing on the case p0 = −1, to the Hamiltonian system
(11) we associate the Jacobi equation equation on T (T ∗M)

δ̇ z(t) = d
−→
H (z) ·δ z(t) (14)

along an extremal z(.). A Jacobi field is a nontrivial solution J(t)= (δq(t),δ p(t)) of
the Jacobi equation along z(.). A Jacobi field is said to be vertical at time t if δq(t) =
0. A time tc is said to be a geometrically conjugate time if there exists a Jacobi field
that is vertical at 0 and at tc. In such a case, q(tc) is said to be conjugate to q(0).
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Conjugate times can be geometrically characterized by considering the exponential
mapping defined, when the final time is assumed to be free, by

expq0,t : p0 −→ q(t,q0, p0) (15)

where q(t,q0, p0) is the projection on the phase space of the solution z(.) of (11)
satisfying z(0) = (q(0), p(0)) and evaluated at the time t. Let us denote expt(

−→
Hr)

the flow of
−→
Hr. The following proposition results from a geometrical interpretation

of the Jacobi equation [6].

Theorem 1. Let q0 ∈M, L0 = T ∗
q0

M and Lt = expt(
−→
H )(L0). Then Lt is a Lagrangian

submanifold of T ∗M whose tangent space is spanned by Jacobi fields starting from
L0. Moreover q(tc) is geometrically conjugate to q0 if and only if expq0,tc is not an
immersion at p0.

Under generic assumptions, the following theorem connects the notion of conjugate
time and the local optimality of extremals, see [1, 6, 8].

Theorem 2. Let t1
c be the first conjugate time along z. The trajectory q(.) is locally

optimal on [0, t1
c ) in C0 topology. If t > t1

c then q(.) is not locally optimal on [0, t] in
L∞ topology.

3.5 Hampath

The software Hampath, see [11], is designed along the indirect method described
above. It also checks the second order optimality condition when smooth opti-
mal control problems are considered. In particular, this package allows one to use
shooting methods by initializing the shooting function by using a differential path-
following method, and to compute the Jacobi of the Hamiltonian system to evaluate
the conjugate times along an extremal solution.

4 Two-dimensional transfers

Our goal is to design three dimensional transfers to our sample pool of TCO. To-
ward this goal, developing two dimensional transfer will prove to be critical for the
initialization of our methods.

4.1 Methodology

We focus on two-dimensional transfers by modeling the Earth-Moon system using
the planar restricted three-body problem where the motion is restricted to the plane
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{z = 0}. Our motivation is to use existing planar time-optimal transfer to the L1
point of the Earth-Moon system computed in ([16]). We compute transfers to planar
projections of TCO passing in a neighborhood of the L1 point.

The planar restricted three-body problem, with q = (x,y, ẋ, ẏ) is given by the
following bi-input system

q̇ = F0(q)+F1(q)u1 +F2(q)u2 (16)

where

F0(q) =


q3
q4

2q4 +q1 − (1−µ) q1+µ

((q1+µ)2+q2
2)

3
2
−µ q1−1+µ

((q1−1+µ)2+q2
2)

3
2

−2q3 +q2 − (1−µ) q2

((q1+µ)2+q2
2)

3
2
−µ q2

((q1−1+µ)2+q2
2)

3
2



F1(q) =


0
0
1
0

 , F2(q) =


0
0
0
1

 ,

Our objective is to compute low-thrust time-minimal numerical transfers from the
geostationary orbit Og to rendezvous with TCO at specific points on their orbits. In
mathematical terms, our aim is to solve optimal control problems of the form

q̇ = F0(q)+F1(q)u1 +F2(q)u2

minu(·)∈BR2 (0,ε)
∫ t f

t0 dt
q(0) ∈ Og, q(t f ) = qrend

(17)

where ε is the maximum thrust, qrend is the rendezvous point (i.e. qrend is the
position and velocity corresponding to the projection on the (x,y)-plane of a given
TCO when it is nearest the point L1) and t f is the transfer time that we want to
minimize. Applying the Pontryagin Maximum Principle in the normal case p0 6= 0,
it comes that every solution q(t) of the optimal control problem (17) is necessarily
the projection of an extremal curve (q(t), p(t)) solution of the system

q̇(t) =
∂H
∂ p

, ṗ(t) =−∂H
∂q

(18)

where the pseudo-Hamiltonian function H is defined by

H(q, p,u) =−1+H0(p,q)+ ε(u1H1(p,q))+u2H2(p,q))

with Hi(p,q) = 〈p,Fi(q)〉, i = 0, 1, 2 Moreover, we deduce from the maximization
condition that, whenever (H1,H2) 6= (0,0), the control u is given by
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ui =
Hi√

H2
1 +H2

2

, i = 1, 2.

Substituting in H, yields the expression of the real Hamiltonian function

Hr(z) =−1+H0(z)+ ε((H2
1 (z)+H2

2 (z))
1
2 )

which is identically zero on [0, t f ] since the transfer time is not fixed. Defining the
switching surface Σ = {H1(p,q) = H2(p,q) = 0}, an element (q, p) ∈R8\Σ is said
to be of order 0. According to [5], every normal time-minimal extremal trajectory is
a concatenation of a finite number of arcs of order 0 such that the control u(.) instan-
taneously rotates by an angle π at junction points. More details about the structure
of the extremals can be found in [5], we here focus on the practical application of
the theory. Therefore, to compute time-minimal extremal trajectories we must find
a zero the shooting equation

E : R5 −→ R5

(p0, t f )−→
(

q(t f )−qrend
Hr(q(t f ), p(t f ))

)
.

We set q0=(0.0947, 0, 0, 2.8792), expressed in the distance and time units of the
restricted 3-body problem, as the initial point on the geostationary orbit. The mass
of the spacecraft is assumed constant to 350 kg to compute the actual thrust value
acting on the spacecraft. As stated in section 2.1 among a database of 18,096 TCO
numerically simulated spatial trajectories we examined the 100 of those which come
within 0.1 LD of L1 with the smallest absolute perpendicular coordinate to the plane
defined by the motion of the Moon around the Earth, at the time they are nearest
L1. This choice was made, as a first approach, to guarantee that the dynamics of the
considered trajectories with respect to this coordinate could be neglected so that they
could be approximated by their two-dimensional projection on the plane of motion
of the Moon for a significant interval of time. For reference, the largest absolute
z-coordinate of any of the 100 selected TCO is |z|= 0.0166 LD. The projections on
this plane have been calculated at every time by taking into account the position of
the Moon in its orbit and the inclination of this orbit. The resulting two-dimensional
trajectories have then been expressed as trajectories in the planar restricted 3-body
problem by using the usual change of variable from the inertial to the rotating frame.

To provide a good initial guess for the shooting method to converge, we use a
continuation method on the maximum control bound ε . Indeed, the higher the max-
imum control bound, the shorter the corresponding transfer time and the Newton
algorithm converges easily to a solution of the shooting method. Therefore, by us-
ing the planar time-minimal transfer from the geostationary orbit to L1 computed in
[16] as an initial guess to initialize the shooting method, we first compute a refer-
ence extremal to each of the 100 selected TCO, associated with a maximum thrust
of 1N, whose projection on the phase space is a candidate to be a time-minimal
transfer. A discrete homotopic method on the parameter ε , is then used to determine
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solutions of the shooting function for smaller control bound and thus candidates to
be low-thrust time-minimal transfers from the geostationary to qrend . At each step of
the continuation algorithm, the first conjugate time along every generated extremal
is computed to ensure, according to the second order condition, that it was locally
time-optimal. All our computations are carried out using the software Hampath [11].

4.2 Results

Applying the methodology described in 4.1 for each of the selected 100 TCO, we
get a collection of two-dimensional extremal transfers with thrusts from 1N to 0.2N.
Note that a thrust of 1N is high enough to get good convergence of the shooting
method, and a thrust of 0.2N was arbitrarily chosen as an acceptable low thrust
value to rendezvous with the TCO.

Using the two-dimensional 1N L1 initialization from [16], we obtain 23 success-
ful two-dimensional 1N TCO transfers. Using a continuation method from these
23 successes, we obtain 15 successful two-dimensional 0.2N TCO transfers. Data
regarding the 15 transfers can be found on Table 2.

TCO # t1
f (d) t1

c (d) trend − t1
f t0.2

f t0.2
c trend − t0.2

f
57 11.1 12.5 189.7 47.2 49.8 153.6
651 19.4 ∞ 13.5 73.0 ∞ -40.1
3813 10.1 14.0 123.2 56.0 ∞ 77.3
3867 10.2 16.6 55.0 55.1 61.8 10.2
4980 11.4 ∞ 67.4 58.0 62.3 20.9
5481 11.0 26.0 315.7 59.4 101.2 267.2
7548 12.2 17.7 66.5 59.3 420.4 19.3
8962 11.8 ∞ 72.4 60.0 76.9 24.2
10585 10.1 30.8 54.1 55.6 121.0 8.5
10979 10.1 ∞ 49.1 59.0 ∞ 0.3
11249 10.0 13.9 65.7 58.3 ∞ 17.5
12028 13.4 22.7 425.0 61.5 149.2 376.9
13933 10.7 14.1 14.4 59.4 65.1 -34.3
14487 10.1 22.6 121.8 58.5 ∞ 73.4
16803 10.7 15.0 234.1 66.5 91.8 178.3

Table 2 Data for the successful two-dimensional transfers. Column 2 gives the transfer times for
the 1N transfers t1

f , and column 3 gives the corresponding conjugate times t1
c . Similarly, column 5

gives the transfer times for the 0.2N transfers t0.2
f , and column 6 gives the corresponding conjugate

times t0.2
c . Note that a conjugate time marked ∞ means that no conjugate times were found within

100 times the transfer time. Columns 4 and 7 give the differences between the TCO rendezvous
time and the transfer times. Note that a negative value in these columns means the transfer would
be impractical, since we’d have to start the transfer before the TCO was captured (and therefore,
likely before it was detected).
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The durations of the successful two-dimensional 1N TCO transfers are all be-
tween 10.0106 days and 19.3920 days while the durations of the successful two-
dimensional 0.2N TCO transfers are all between 47.2394 days and 72.9984 days.
For 13 of the 15 low-thrust transfers, the transfer time t0.2

f is less than the time it
takes the corresponding TCO to evolve from its time of capture to the rendezvous
point. This remark is crucial from a practical stand point since it suggests that it may
be feasible to detect a TCO enough in advance to launch a low-thrust time-optimal
rendezvous mission.

Figure 4 gives examples of successful two-dimensional transfers using thrusts of
1N and 0.2N.

5 Three-dimensional transfers

In this section, we use results of section 4 to design three dimensional transfers.

5.1 Methodology

To compute three-dimensional time-minimal transfers to TCO, the methodology
presented in 4.1 has to be adapted to take into account the vertical coordinate z. Let
q = (x,y,z, ẋ, ẏ, ż), the controlled equations (4) are then expressed as the bi-input
system

q̇ = F0(q)+F1(q)u1 +F2(q)u2 +F3(q)u3 (19)

where

F0(q) =



q4
q5
q6

2q5 +q1 − (1−µ) q1+µ

((q1+µ)2+q2
2+q2

3)
3
2
−µ q1−1+µ

((q1−1+µ)2+q2
2+q2

3)
3
2

−2q4 +q2 − (1−µ) q2

((q1+µ)2+q2
2+q2

3)
3
2
−µ q2

((q1−1+µ)2+q2
2+q2

3)
3
2

−(1−µ) q3

((q1+µ)2+q2
2+q2

3)
3
2
−µ q3

((q1−1+µ)2+q2
2+q2

3)
3
2



F1(q) =


0
0
0
1
0
0

 , F2(q) =


0
0
0
0
1
0

 , F3(q) =


0
0
0
0
0
1

 .
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Fig. 4 Locally time-minimal two-dimensional transfers to four distinct TCO, associated with dif-
ferent thrusts, in the rotating frame. In each figure, the Earth (left) and the Moon (right) are shown
as circles and the point L1 by an asterisk. The thin black curves represent portions of the TCO
trajectories. The thick blue curves represent the extremal transfer from the geostationary orbit
(marked as a triangle) to the TCO (marked as an X).
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and the optimal control problem that we have to solve in order to compute time-
minimal numerical transfers between the geostationary orbit and a given TCO is
written 

q̇ = F0(q)+F1(q)u1 +F2(q)u2 +F3(q)u3

minu(·)∈BR3 (0,ε)
∫ t f

t0 dt
q(0) ∈ Og, q(t f ) = qrend

(20)

Applying the Pontryagin Maximum Principle gives similar results to those ob-
tained in the the two-dimensional problem. In the normal case p0 6= 0, every solution
q(t) of (20) is the projection of an extremal curve (q(t), p(t)) solution of the Hamil-
tonian system

q̇(t) =
∂Hr

∂ p
, ṗ(t) =−∂Hr

∂q
(21)

where the Hamiltonian function Hr is given by

Hr(z) =−1+H0(z)+ ε((H2
1 (z)+H2

2 (z)+H2
3 (z))

1
2 )

with Hi(p,q) = 〈p,Fi(q)〉, i = 0, . . . ,3. As in the two-dimensional problem, Hr is
identically zero on [0, t f ], the final time being free. Consequently, computing three-
dimensional time-minimal extremal trajectories is performed by solving the shoot-
ing equation associated with the function

S : R7 −→ R7

(p0, t f )−→
(

q(t f )−qrend
Hr(q(t f ), p(t f ))

)
.

We set the initial condition on the geostationary orbit as q0 = (0.0947,0,0,
0,2.8792,0), the mass of the spacecraft being assumed constant to 350 kg. The tar-
get set of TCO to reach is the same as in the two-dimensional problem, it is formed
of the 100 TCO coming within 0.1 Lunar units of the point L1 with the smallest ab-
solute vertical coordinate z. There are two reasons for selecting these TCO. First, as
in the two-dimensional problem, the circular restricted three-body problem provides
a good approximation of their orbits in the close neighborhood of the L1. In addi-
tion, the two-dimensional time-optimal transfers previously computed on the plane
of motion of the Moon can be used to find initial guesses for the shooting method
to converge.

In order to compute as many three-dimensional time-optimal transfers as possi-
ble, within a range of thrust from 0.2N to 1N, we propose two different approaches
for the initialization of the shooting method. They are detailed below.

1. The first approach consists of using the two-dimensional transfer to L1 associ-
ated with a thrust of 1N computed in ([16]) as an initial guess to directly com-
pute three-dimensional transfers to TCO, associated with a thrust of 1N as well.
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A continuation method on the control bound is then applied to compute three-
dimensional transfers to TCO corresponding to lower thrusts.

2. The second way consists of using, for every TCO, the two-dimensional transfer
associated with a thrust of 1N computed in section 4.1 as an initialization to com-
pute a three-dimensional transfer associated with a thrust of 1N. A continuation
on the control bound is then performed to compute three-dimensional transfers
corresponding lower thrusts.

An important remark is that, as a convention, to initialize any three-dimensional
transfer with an initialization from a two-dimensional transfer, we set the entries cor-
responding to the z coordinates equal to zero. Moreover, as in the two-dimensional
problem, we used the second order condition to guarantee both the convergence of
the continuation method and the local optimality of the computed transfers.

5.2 Results

Using the methodology described above, we have obtained the following results

• From the 15 two-dimensional 0.2N TCO transfer initializations, we obtain 5 suc-
cessful three-dimensional 0.2N TCO transfers;

• From the 23 two-dimensional 1N TCO transfer initializations, we obtain 17 suc-
cessful three-dimensional 1N TCO transfers. Using a continuation method, we
obtain 13 successful three-dimensional 0.2N TCO transfers;

• From the two-dimensional 1N L1 initialization, we obtain 15 successful three-
dimensional 1N TCO transfers. Using a continuation method, we obtain 12 suc-
cessful three-dimensional 0.2N TCO transfers.

Note that some successes of one initialization strategy overlap with successes
of other initialization strategies. In total we have 23 distinct successful three-
dimensional 1N TCO transfers and 16 distinct successful three-dimensional 0.2N
TCO transfers. The durations of the successful three-dimensional 1N TCO transfers
are all between 10.0107 days and 19.4615 days while for the 0.2N transfers they
are all between 55.3125 days and 81.4559 days. Table 3 displays data regarding the
transfers.

Figure 5 gives examples of successful two-dimensional transfers using thrusts of
1N and 0.2N.

6 Conclusion and Future Work

This preliminary study provides the first numerical two-dimensional and three-
dimensional time-optimal transfers to TCO. However, some limitations of the meth-
ods presented in this work prevent us from computing larger collections of such
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Fig. 5 Locally time-minimal three-dimensional transfers to four distinct TCO, associated with
different thrusts, in the rotating frame. In each figure, the Earth (left) and the Moon (right) are
shown as circles and the point L1 by an asterisk. The thin black curves represent projections of
portions of the TCO trajectories. The thick blue curves represent the extremal transfer from the
geostationary orbit (marked as a triangle) to the TCO (marked as an X).
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TCO # t1
f (d) t1

c (d) trend − t1
f t0.2

f t0.2
c trend − t0.2

f
57 13.1 15.6 187.6 62.3 67.3 138.5
651 19.5 28.4 13.4 81.5 91.2 -48.6
2778 18.6 20.2 100.2 77.7 80.1 41.1
3813 13.5 21.4 119.8 62.0 69.5 71.3
3955 19.3 26.9 27.5 80.6 89.4 -33.8
4227 10.1 68.4 56.8 55.3 ∞ 11.6
5481 11.1 13.2 315.6 59.9 107.0 266.8
7628 18.5 20.5 123.1 76.2 79.0 65.3
8962 11.9 19.2 72.4 65.1 82.8 19.1
10585 12.6 16.9 51.5 64.2 67.8 -0.1
10747 19.2 23.9 43.3 81.4 87.4 -18.8
10979 12.8 15.5 46.4 73.5 78.6 -14.3
11249 10.0 19.6 65.7 57.3 63.1 18.4
14487 12.8 16.5 119.1 62.9 66.8 69.0
16519 15.8 18.3 905.5 78.8 83.2 842.4
16803 10.8 14.6 234.0 67.1 70.7 177.7

Table 3 Data for the successful three-dimensional transfers. Column 2 gives the transfer times for
the 1N transfers t1

f , and column 3 gives the corresponding conjugate times t1
c . Similarly, column 5

gives the transfer times for the 0.2N transfers t0.2
f , and column 6 gives the corresponding conjugate

times t0.2
c . Note that a conjugate time marked ∞ means that no conjugate times were found within

100 times the transfer time. Columns 4 and 7 give the differences between the TCO rendezvous
time and the transfer times. Note that a negative value in these columns means the transfer would
be impractical, since we’d have to start the transfer before the TCO was captured (and therefore,
likely before it was detected).

transfers and have to be improved. First, to refine our model the eccentricity of the
orbit of the Moon around the Earth should be taken into account. This can be done
for instance by using the so-called elliptic restricted problem [18] whose solution
curves are more likely to model TCO trajectories in the Earth-Moon system. Addi-
tionally, the variations of the inclination of the plane of motion of the Moon around
the Earth have to be considered instead of considering the mean value of this in-
clination as it is done in the present work. Second, the initialization methodology
used in this paper to make the shooting method converge, could be refined as well.
Instead of using the planar two-dimensional time-minimal transfer as the reference
initial guess, each transfer to a given TCO could be used as a new initial guess to
compute transfers to other TCO. This would allow to increase the number of target
TCO to compute optimal transfers not only in a small vicinity of the L1 point but in
extended area within the Earth-Moon system.
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aux”, Springer-Verlag, Berlin, 2006.

8. B. Bonnard and I. Kupka, Théorie des singularités de l’application entrée/sortie et opti-
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