
Lecture 2 Riemannian and Sub-Riemannian geometry
Definition

• Riemannian geometry

dx

dt
=
∑
i=1,,n

uiFi(x),Minu→
ˆ T

0

∑
u2
i (t)dt

• SR-geometry

dx

dt
=
∑
i=1,,m

uiFi(x),Minu→
ˆ T

0

∑
u2
i (t)dt,m < n

where n is the dimension of the ambient manifold.

Concepts of Symplectic geometry

• H hamiltonian vector field associated to the Hamilton functionH : ∂H
∂p

∂
∂x−

∂H
∂x

∂
∂p

• Poisson bracket of two hamitonians H,G : {H,G} = dH(G) =∂H
∂x

∂G
∂p −

∂G
∂x

∂H
∂p (Eisnstein convention)

• If F,G vector fields with symplectif lifts HF =< p, F (x) >, HG =<
p,G(x) > then {HF , HG}(z) =< p, [F,G](x) >, with z = (x, p) Darboux
coordinates.

Computations of geodesics equations in Poincaré coordinates

Introduce H = (H1, ..,Hn) where Hi is the symplectic lift of the vector filed Fi.
Replace (x, p)→ (x,H).

Then

dx

dt
=
∂H

∂p
=
∑

uiFi =
∑

HiFi

dHi

dt
= dHi(1/2

∑
H2

i ) =
∑
{Hi, Hj}Hj

and

{HI , Hj} =< p, [Fi, Fj ](x) >, [Fi, Fj ](x) =
∑

ckij(x)Fk(x)

Note invariant case : the structure coefficients ckij are constant.
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Example Flat case

[Fi, Fj ](x) = 0.

Hence

dHi

dt
= 0, Hi = ci.

Frobenius : Choose a ccordinates system such that Fi = ∂
∂xi

.
One gets : the solutions of geodesics equations are lines.

Basic facts about SR-geometry

Introduce the distribution D = span{F1, F2, ..., Fm} asociated to the (in gene-
tral) non holonomic constraints dx

dt εD(x(t)).One can complete the distribution
to form a frame {F1, ...., Fm, ..., Fn} (Geometry : the SR metric is defined as
the restriction to a Riemannian metric to the distribution).

First step compute the geodesics equations using the weak maximum
principle

One has two cases called respectively the normal case and the abnormal case

Normal case in SR-geometry

It corresponds to a singularity to the cost extended system (similar to the Rie-
mannian case) with pseudo -Hamiltonian

H(z, u) =
∑

i=1,...,m

uiHi − 1/2
∑

i=1,...,m

u2
i

which gives using tthe weak maximum principle the true Hamiltonian

H =
1

2

∑
i=1,...,m

H2
i .

Abnormal case Example m = 2.

They correspond to the singularities of the system only and are associated to
the pseudo-Hamilonian

H =
∑
i=1,.2

uiHi

and from the maximum principle one must have identically

H1(z(t)) = H2(z(t)) = 0.
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Differentiate twice along the solutions one gets the relations

{H1, H2}(z(t)) = u1{{H1, H2}, H1}(z(t)) + u2{{H1, H2}, H2}(z(t)) = 0.

The second relation allows to compute the control (parameterized by arc-
length) : u2

1 + u2
2 = 1.

Usual definitions and concepts in SR-geoemtry similar to the Rie-
mannian case

Notation Hn = 1/2
∑
i=1,...,mH

2
i : Hamiltonian in the normal case .

Solution z(t, z0) = exptHn(z). : normal extremal , geodesic : projection on
the ambient manifold.

Exponential mapping : fix x(0) = x0, and let π : (x, p)→ x. expx0(p(0), t)→
π(z(t, z0)).

One can parametrerized by arc-length : impose Hn = 1/2

Sub-Riemannian distance

Length of the minimizing geodesic joining x0 to x1. (Chow theorem ensures the
existence of the distance and Filipov theorem ensures exitence oof minimizers).

Ball and sphere with radius r

B(xx0
, r) = {x, d(x0, x) ≤ r}, S(x0, r) = {x, d(x0, x) = r}.

Ultimate goal : compute the sphere

In SR-geometry the computation is intricated even form small radius
: singularities

The concept of conjugate point
It is a basic concept in SR-geometry : the definition is similar to the Riemannian
case.

Definition

Let t → x(t, p(0)) be a reference geodesic. A conjugate time is a time tc such
that the exponential is not of full rank (not immersive).

Proposition

If t > t1c (First conjugate time) the geodesic is no more minimizing for the
C1−topology on the set of curves.
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Notation

C(x0) : conjugate locus=set of first conjugate points for geodesics emanating
from x0. Cut locus CΣ(x0) = set of points along geodesics where the global
optimality is lost.

Classification of distributions

An important step in the analysis of SR)-geometry is the problem of classi-
fication of sdistributions which goes back to Cartan, Goursat, Darboux and
was well studiedmore recently in the framework of singularity theory (Martinet,
Zhitomirski). Note that this classification is related to the abnormal curves as-
sociated to the distribution( contribution to control theory to the computations
of invariants).

Definition

A discrete set of invariants is simply the growth f vector at a point : let D1 =
D,D2 = [D,D1], .....,Dk = [Dk−1, D1] and (n1, n2, ..., nk, ...) the respective
dimensions. (Use Chow theorem to end the sequence)

Classification of two dimensional distributions in dimension 3 at a
point x0 (stable cases)

Contact case

• D = span{F1, F2}

• [F1, F2](q0) /∈ D(q0)

Normal form

Coordinates q = (x, y, z), D = kerα, α = ydx+ dz.
Observe : dα = dy ∧ dx : Darboux form, ∂

∂z = Lie bracket [F1, F2] : charac-
teristic direction

Martinet case

• [F1, F2](q0)εD(q0)

• [[F1, F2], F1](q0] or [[F1, F2], F2](q0] /∈ D(q0).

Normal form

D = kerα, α = dz − y2/2dx.
Interpretation : Martinet surface M = det(F1, F2, [F1, F2]) = 0 identified to

y = 0. Abnormal curves in this surface identified to the vector field ∂
∂x
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Remark

In both cases the distributions are nilpotent

Working example (Brockett-birth of SR-geometry) The Heisenberg
case

Model

q = (x, y, z) local coordinates near 0

dq

dt
= u1F1 + u2F2, F1 =

∂

∂x
+ y

∂

∂x
, F2 =

∂

∂y
− x ∂

∂x
,

Note : Contact case at 0. The SR-metric is given byMin
´ T

0
(u2

1+u
2
2)dt. Amount

to minimize the euclidian length of the projection curve on the plane (x, y).

Relation with Dido problem

one has z1 − z0 =
´ T

0
(dxdt y −

dy
dt x)dt: integrant proportional to the aera swept

by the curve in the plane (x, y). Dual to the problem : among the closed curves
in the plane whose length is fixed find the one with maximum enclosed aera.

SOLUTIONS : CIRCLES.

Computations : only normal curves (Contact case)

Poincaré coordinates introducing F3 = [F1, F2] =
∂
∂z .

dH1

dt
= {H1, H2}H2 = H2H3,

dH2

dt
= −H1H3,

dH3

dt
= 0.

Integration

H3 = λ (constant), H1 = Asin(λt+ ϕ). (Linear pendulum).

Geodesics starting from 0

Deduce geodesics

• λ = 0 : Straigth lines in the plane (x, y)

• λ non zero (can be taken positive)

x(t) =
A

λ
[sin(λt+ ϕ)− sinϕ], y(t) = A

λ
[cos(λt+ ϕ)− cosϕ]
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Circles in the palne (x, y)

z(t) =
A2

λ
t− A2

λ2
sin(λt).

Note : λ,A, ϕ are the constant of integrations

Non trivial exercice

Check that the first conjugate time occurs at t1c = 2π/λ for a non planar
geodesics and correspond also to the cut time.

Computation

exponentiel mapping (λ,A, ϕ)not of full rank. Computations are possible with-
out numerics since we have the explicit form of the solutions using elementary
functions.

Conclusion Represent the sphere of radius r and show it not smooth
when intersecting the z-axis (conjugate point computation)

Lecture 3 An application of SR-geometry : the swimming
problem at low Reynolds number
They are many applications of SR-geometry, e;g. to planning motions in robotics
butr we concentrate to a recent one associated to locomation. It is the problem
of swimming for mico-organisms called the swimming problem at low Reynolds
see the introductory paper by Purcell : life at lowReynolds number, American
J. Physics, Vol 5, No 1, Jan 1977.

Matthematical framework

The first result is the so-called scallop theorem

Theorem A scallop cannot swim

The model is

dx

dt
=

[
sinα

2− cos2α

]
dθ

dt

where x is ths displacement and θ is the shape variable which goes from
π/2 − γ → π/2 when opening and π/2 → π/2 − γ when closing producing a
total displacement of zero (reversibility) obvious from the form of the equation.
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Conclusion at least two shape variables (links) are necessary to swim.

This leads to the famous Purcell swimmer. It is formed by to two links to
change the shape with the dynamics dθi

dt = ui and the position of the body of
the swimmer is given by q = (x, y, α)and the dynamics is described by dq

dt =∑
uiFi(θ, α).
The deformation in the shape variables produces a displacement which is

a very nice consequence of Baker-Campbell-Hausdorff formulae. Applying the
sequence u1 = 1, u2 = −1, u1 = −1, u

2
= 1 leads to compute the composition

exptF2oexptF1oexptF2exp− tF1 = exp(t2[F1, F2] + o(t2)).

For small t it amounts to a displacement of t2[F1, F2] evaluated at the
point q

NB Compare with Becker, Koehler, Store, Journal of Fluid dynamics , 2003, vol
490, 15-35.

Optimal control

The underlying optimal control problem is well known : from fluid mechanics
: it is the mechanical power dissipated by the fluid viscous drag of forces and
torques resisting to the motion of the links.

Hence the Purcell problem is of the form

dq

dt
= D(α)G(θ)

dθ

dt

where G is a very complicated matrix and the cost is of the form u →
Min

´ 2π

0
L(θ, dθdt )dt given by the mechanical power expended (quadratic form in

dθ
dt ).

Simplified model the copepod swimmer Daisuke Takagi

Small sphere with small radius with n pairs of symmetric links with equal length
and the swimmer velocity is

dx

dt
=

∑ dθi
dt sinθi∑

1 + sin2θi
.

This model is motiavated by

• model for a abundant variety of zooplankton called the copepod

• Purcell swimmer is very complicated : five dimensional model and the
approximating Lie algebra is the Cartan nilpotent model.
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General concept

The concept of stroke is the following. It is a periodic motion in the shape
space (the period can be normalized to 2π). The optimal control problem is to
compute the optimal strokes.

Note

The weak maximum principle has to be applied with an additional transversality
conditions related to periodic strokes. The adjoint vector pθ dual to the shape
variables has to satisfy pθ(0) = pθ(2π).

Conclusion

The copepod swimmer is analyzed in full details in the paper : A note about
the geometric optimal control of teh copepod swimmer : various strokes are
geometrically discribed and numerically computed in the optimal control fra-
mawork : non sel intersecting , eight, limacon and their optimality discussed
using the concept of conjugate points and computing the energy function.
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