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Abstract. This article deals with the problem of computing energy-minimal

trajectories between the invariant manifolds in the neighborhood of the equilib-
rium point L1 of the restricted 3-body problem. Initializing a simple shooting

method with solutions of the corresponding linear optimal control problem, we

numerically compute energy-minimal extremals from the Pontryagin’s Maxi-
mum principle, whose optimality is ensured thanks to the second order opti-

mality condition.

1. Introduction. Computing energy-minimal orbit transfers is one of the crucial
challenges to take up to design space missions using low-propulsion. In particular,
the SMART-1 mission from the European Space Agency, see [11], has motivated
numerous studies dealing with low thrust trajectories from the Earth to the Moon,
using for instance simple feedback laws [3] or the transcription method [2]. In [4],
optimal transfers between quasi-Keplerian orbits in the Earth-Moon system are
computed basing on numeric methods connected with fundamental results from
geometric control theory. The free motion of the spacecraft is described by the
equations of the planar restricted 3-body problem, [13]: two primaries are circu-
larly revolving around their center of mass with a constant angular velocity under
the influence of their mutual gravitational attraction and a third body with negligi-
ble mass is moving in the plane defined by the motion of the two primaries. Adding
control terms in the equations of motion, extremal curves solutions of the Pontrya-
gin’s Maximum Principle [10] are numerically computed using simple shooting and
smooth continuation methods. Their local optimality is checked according with the
second order optimality condition related with the notion of conjugate points. In
figure 1 is displayed an example of such an optimal trajectory.

In this article, the above methods are used to compute energy-minimal transfers
in the vicinity of the equilibrium point L1 of the spatial restricted 3-body problem
where the vertical dimension is taken into account. Indeed, the study of the flow
in the equilibrium region exhibits invariant manifolds of orbits asymptotic to an
invariant 3-sphere of bounded orbits, see [9]. These invariant manifolds can be used
as low energy passageways connecting primaries’ attraction areas. This is why we
investigate the problem of minimizing the energy cost to reach one from one other.
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Figure 1. Energy minimal Earth-Moon trajectory in the rotating
frame. The neighborhood of the point L1 acts as the way from
Earth’s to Moon’s gravity area.

The first section of this article focus on the dynamics of the spatial problem in
the vicinity of the point L1. Equations of motion can be written in Hamiltonian
form and the study of the linearized system shows that local behavior is of the type
saddle×center×center, allowing to classify orbits in bounded, asymptotic, transit
and non-transit orbits, see [9]. The second section is devoted to the linearized
control system. Using standard results from the linear control theory, see [8], we
explicitly compute the optimal control used to reach the instable manifold toward
the Moon from the stable manifold from the Earth. The initial adjoint vector η0
from the maximum principle depends on the initial condition in the phase space z0
and can be computed integrating backwards a Riccati matricial equation. In the
last section, we use this η0 to initialize the simple shooting method and numerically
compute energy-minimal extremal solutions associated with the non- linear control
system, whose local optimality is ensured by the second order conditions.

2. Spatial problem and dynamics in the vicinity of equilibrium points.
Let us recall the equations of the three degree-freedom circular restricted 3-body
problem, see [13] for further details. Units of time, mass and length are normalized
so that the sum of the primaries masses, the distance between the primaries, their
angular velocity and the gravitational constant are 1. Choosing a positively ori-
ented synodic reference system{O,X, Y, Z}, the origine is the barycenter of the two
primaries. The biggest primary (the Earth) with mass 1−µ is located at (−µ, 0, 0)
and the smallest one (the Moon) with mass mass µ is located at (1− µ, 0, 0). The
equations of motion of the third body (the spacecraft) take the form

Ẍ − 2Ẏ =
∂V

∂X
, Ÿ + 2Ẋ =

∂V

∂Y
, Z̈ =

∂V

∂Z
(1)

where the potential is given by

V =
1

2
(X2 + Y 2) +

1− µ
((X + µ)2 + Y 2 + Z2)

1
2

+
µ

((X − 1 + µ)2 + Y 2 + Z2)
1
2

.

Setting pX = Ẋ − Y , pY = Ẏ + X and pZ = Ż, one can write the equations in
Hamiltonian form associated with the Hamiltonian function

H =
1

2
(p2X + p2Y + p2Z) + Y pX −XpY −

1− µ
ρ1
− µ

ρ2
. (2)

where ρ1 and ρ2 are the distances between the spacecraft and the primaries. The
equilibrium points of the problem are well known. They all belong to the (X,Y)-
plane and split in two different types. Firstly, the collinear points L1, L2 and L3
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are located on the line y = 0 defined by the primaries. Secondly, the equilateral
points L4 and L5 form with the two primaries equilateral triangles. To study the
dynamics in the vicinity of a collinear equilibrium point Li=1, 2, 3, one translates
the origine to the location of Li and applies some scaling so that the distance γj
from Li to the closest primary is 1. The equations of motion become

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn(

x

ρ
),

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn(

x

ρ
)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn(

x

ρ
)

(3)

where Pn denotes the Legendre polynomial of order n, ρ = x2 + y2 + z2 and the
coefficients cn depend on both libration points and the constant µ. Skipping the
non-linear terms, one obtains the linearized equation

ẍ− 2ẏ − (1 + 2c2)x = 0, ÿ + 2ẋ+ (c2 − 1)y = 0, z̈ + c2z = 0. (4)

Defining px, py and pz as previously, the linearized equation is equivalent to the
Hamiltonian system associated with the function

H =
1

2
(p2x + p2y + p2z) + ypx − xpy −

c2
2

(2x2 − y2 − z2). (5)

It is not difficult to check that the linear behavior in the vicinity of Li=1, 2, 3 is of
type saddle×center×center with two real and four imaginary eigenvalues denoted
(±λ1,±iω1,±iω2) see [9]. Moreover, one can show that the matrix

C =



2λ1

s1
0 0 − 2λ1

s1
2ω1

s2
0

λ2
1−2c2−1
s1

−ω2
1−2c2−1
s2 0

λ2
1−2c2−1
s1 0 0

0 0 1√
ω2

0 0 0
λ2
1+2c2+1
s1

−ω2
1+2c2+1
s2 0

λ2
1+2c2+1
s1 0 0

λ3
1+(1−2c2)λ1

s1 0 0
−λ3

1−(1−c2)λ1

s1
−ω3

1+(1−2c2)ω1

s2 0
0 0 0 0 0

√
ω2


where

s1 = (2λ1((4 + 3c2)λ21 + 4 + 5c2 − 6c22))
1
2 , s2 = (ω1((4 + 3c2)ω2

1 − 4− 5c2 + 6c22))
1
2 ,

defines a symplectic change of variables that, denoting v = (q1, q2, q3, p1, p2, p3) the
new coordinates, casts the Hamiltonian 5 into

H = λ1q1p1 +
ω1

2
(q22 + p22) +

ω2

2
(q23 + p23). (6)

The analysis of the flow of the linearized system in the equilibrium region R, de-
termined for positive h and c by H = h and |q1 − p1| ≤ c, can be performed noting
that, when q1p1 6= 0, the projections of the orbits in the (q1, p1)-plane lie on the
branches of hyperbolas q1p1=constant, since q1p1 is a first integral of the linearized
equation. One thus distinguishes four categories of orbits [9]:

• the point q1 = p1 = 0 corresponds to an invariant 3-sphere S3
h of bounded

orbits,
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• the asymptotic orbits gather the stable and unstable manifolds of S3
h, respec-

tively denoted W s
±(S3

h) and Wu
±(S3

h) and given by

W s
±(S3

h) = {ω1

2
(q22 + p22) +

ω2

2
(q23 + p23) = h, q1 = 0, p1 ≷ 0}

Wu
±(S3

h) = {ω1

2
(q22 + p22) +

ω2

2
(q23 + p23) = h, p1 = 0, q1 ≷ 0},

(7)

• the hyperbolic segments q1p1 = constant > 0 correspond to transit orbits,
• the hyperbolic segments q1p1 = constant < 0 correspond to non-transit orbits.

Let us mention that the non-linear dynamics in the Region R is qualitatively the
same that the linear one, see [9]. In this case, there exists a normally perodic
invariant manifold Mh

3 which still has stable and instable manifolds which can be
approximated by the invariant manifolds W s

±(S3
h) and Wu

±(S3
h), the non-linear terms

being much smaller than the linear ones in a neighborhood of the collinear point.

3. Linear control system with energy cost around the point L1. From now
on, we focus on studying the controlled dynamics around the Lagrangian point L1.
Our aim is to compute energy-minimal transfers reaching the positive branch of
the instable manifolds Wu

+(S3
h) from the positive branch of the stable manifolds

W s
+(S3

h). Indeed, W s
+(S3

h) (resp. Wu
+(S3

h)) is a dynamical channel which connects
the Earth’s (resp. Moon’s) attraction area and a closed neighborhood of L1 as time
increases (resp. decreases) that justifies the interest of such transfers for designing
low-energy Earth-Moon trajectories. Let us start by investigating the linearized
control system

ẍ− 2ẏ − (1 + 2c2)x = u1, ÿ + 2ẋ+ (c2 − 1)y = u2, z̈ + c2z = u3. (8)

which is obtained adding control terms in the equations of motion 4. Thus, the
Hamiltonian function 5 becomes

H =
1

2
(p2x + p2y + p2z) + ypx − xpy + c2(x2 +

y

2
+
z

2
)− u1x− u2y − u3z. (9)

Applying the symplectic change of variable C, equation 8 can be written

v̇ = Av +Bu (10)

where

A =


λ1 0 0 0 0 0
0 0 0 0 ω1 0
0 0 0 0 0 ω2

0 0 0 −λ1 0 0
0 −ω1 0 0 0 0
0 0 −ω2 0 0 0

 , B =



2λ1

s1
−λ

2
1−2c2−1
s1 0

− 2ω1

s2
0 0

0 0 0
2λ1

s1

λ2
1−2c2−1
s1 0

0
−ω2

1−2c2−1
s2 0

0 0 1√
ω2


.

Considering no constraints on the control bound, the Kalman condition, see [8],
asserts that the system 10 is controlable. Let us fix a transfer time tf . Therefore,
determining an energy-minimal transfer from W s

+(S3
h) to Wu

+(S3
h) consists in solving

the following linear optimal control problem with quadratic cost

v̇ = Av +Bu

minu(.)∈R2

∫ tf
0
u21 + u22 + u23dt

v(0) ∈W s
+(S3

h), v(tf ) ∈Wu
+(S3

h).

(11)
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Set v0 ∈ W s
+(S3

h). From the standard linear quadratic maximum principle, see [8],
there exists an unique optimal control u∗ solving 11; the corresponding optimal
response v∗ and adjoint vector η∗ are found as any solutions of the system

v̇ = Av +BBT η, η̇ = −AT η
v(0) = v0, v(tf ) ∈ ∂Wu

+(S3
h)

η(tf ) is interior normal to Wu
+(S3

h) at v(tf )
(12)

and u∗ is given by

u∗(t) = BT η(t). (13)

Given an initial η0 ∈ T ∗v0W
s
+(S3

h) such that (vf , ηf ) fullfils the final transversality
condition of the system 12, the solution of the linear differential system 12 is

(
v(t)
η(t)

)
= exp

t

 A BBT

0 −AT
(

v0
η0

)
(14)

and substituting in 13, the optimal control can be explicitly written

u∗(t) =

 2λ1
s1

(η0q1e
−λ1t + η0p1e

λ1t)− 2ω1
s2

(η0q2 cos(ω1t) + η0p2 sin(ω1t))
λ2
1−2c2−1

s1
(−η0q1e

−λ1t + η0p1e
λ1t)− ω2

1+2c2+1

s2
(η0p2 cos(ω1t)− η0q2 sin(ω1t))

1√
ω2

(η0p3 cos(ω2t)− η0q3 sin(ω2t))

 .

Such an initial adjoint vector η0 can be determined integrating backwards a Riccati
matricial equation, see [8]. Indeed the condition η(tf ) is interior normal to Wu

+(S3
h)

at v(tf ) involves

η∗T (tf ) = −v∗T (tf )Q (15)

where the matrix Q is given by

Q =


0 0 0 0 0 0
0 kω1 0 0 0 0
0 0 kω2 0 0 0
0 0 0 0 0 0
0 0 0 0 kω1 0
0 0 0 0 0 kω2


and the constant k is stictly positive. Since the couple (v∗, η∗) satisfies

v̇ = Az +BBT η, η̇ = −AT η,

it comes that η∗T (t) = v∗T (t)E(t) where E is the solution of the Riccati matricial
equation

Ė = −ATE − EA− EBBTE
E(tf ) = −Q. (16)

The optimal control u∗ is consequently a feedback control given by

u∗(t) = BTET (t)v(t) (17)

and integrating backwards the equation 16 one obtains the initial condition

η∗T (0) = v∗T0 E(0). (18)
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4. Energy-minimal transfers computations around the point L1. Let us
now consider the non-linear control system in the vicinity of L1

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn(

x

ρ
) + u1

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn(

x

ρ
) + u2

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn(

x

ρ
) + u3

(19)

which is derived from 3. As we mentionned previously, the invariant manifolds of
the linear dynamics near L1 are good approximations of the invariant manifolds
that exist in the non-linear dynamics case. This is why we keep the definition of
W s

+(S3
h) and Wu

+(S3
h) we gave in section 2. For the sake of simplicity, we investigate

the problem of computing energy-minimal transfers from the submanifold W s
α(S3

h)
where α is a stricly positive constant and p1 is set to α, to Wu

α (S3
h) where q1 is set

to α. Once again, the transfer time tf is fixed and no constraints on the control
bound are considered. Keeping the notation v = (q, p) = (x, y, z, px, py, pz), the
optimal control problem we are investigating writes

v̇ = F0(v) +
∑3
i=1 uiFi(v)

minu(.)∈R2

∫ tf
0
u21 + u22 + u23dt

v(0) ∈W s
α(S3

h), v(tf ) ∈Wu
α (S3

h)

(20)

where

F0(v) =



p1 + q2
p2 − q1
p3

∂
∂q1

∑
n≥2 cnρ

nPn( q1ρ ) + p2− q1
∂
∂q2

∑
n≥2 cnρ

nPn( q1ρ )− p1− q2
∂
∂q3

∑
n≥2 cnρ

nPn( q1ρ )

 , Fi(v) =
∂

∂pi
, i = 1, 2, 3.

Control theory provides powerfull tools to study optimal solutions from the geomet-
ric point of view. First, from the Pontryagin’s Maximum Principle, see [10],optimal
solutions are found among extremal curves (v, η) ∈ T ∗R6 solutions of the system

v̇ =
∂H

∂η
, η̇ = −∂H

∂v
(21)

where H is the pseudo-Hamiltonian function

H(v, η, u) =< η, F0(v) > +

3∑
i=1

ui < η, Fi(v) > +η0(

3∑
i=1

u2i )

= H0(v, η) +

3∑
i=1

uiHi(v, η) + η0(

3∑
i=1

u2i )

(22)

and η0 is a non-positive constant. Moreover, the optimal control u∗ satisfies the
maximization condition

H(v, η, u∗) = max
w∈R3

H(v, η, v) (23)
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that involves Hi = −2p0ui. In the normal case p0 6= 0, one can normalize p0 to -1/2
which gives Hi = ui so that, substituting in 22, H becomes the true Hamiltonian

Hr(v, η) = H0(v, η) +
1

2
(η24 + η25 + η26) (24)

and equation 21 can be written

(v̇, η̇) =
−→
Hr(v, η) (25)

where
−→
Hr is the Hamiltonian vectorfield associated with Hr. Finally, the following

final transversality condition

η(tf ) ⊥ Tv(tf )W
u
α (S3

h). (26)

has to be fullfiled. Note that the final conditions v(tf ) ∈ Wu
α (S3

h) and η(tf ) ⊥
Tv(tf )W

u
α (S3

h) can be written γ(v(tf )) = 0 where the function γ is defined by

γ : x ∈ R12 →


x1 − α
x4

ω1

2 (x22 + x25) + ω2

2 (x23 + x26)− h
< (x7, . . . , x12), h1 >
< (x7, . . . , x12), h2 >
< (x7, . . . , x12), h3 >

 (27)

and the family {h1, h2, h3} spans the 3-dimensional tangent space Tv(tf )W
u
α (S3

h).
The Maximum principle is a necessary optimality condition and to get a necessary
sufficient one we have to introduce the notion of conjugate time, see [5].

Definition 4.1. Consider a smooth manifold M of dimension n and an Hamiltonian
system Ẋ =

−→
H (X(t)) where X = (q, p) ∈ T ∗M is written in local coordinates. The

variational equation

δ̇X(t) = d
−→
H (X).δX(t) (28)

is called the Jacobi equation along X. One calls a Jacobi field a nontrivial
solution J(t) = (δq(t), δp(t)) of the Jacobi equation along X and it is said to be
vertical at time t if δq(t) = 0. A time tc is said to be geometrically conjugate
if there exists a Jacobi field vertical at 0 and tc. In which case, q(tc), is said to be
conjugate to q(0).

In order to give a geometric characterization of conjugate times, let us define the
so-called exponential mapping.

Definition 4.2. Let be q0 ∈ M and t ∈ [0, tf ]. One defines the exponential
mapping by

expq0,t : p0 −→ q(t, q0, p0)

where q(t, q0, p0) is the projection on the phase space of the unique trajectory X of
−→
H satisfying X(0, q0, p0) = (q0, p0)

Let expt(
−→
H ) be the flow of

−→
H . The following proposition results from a geomet-

rical interpretation of the Jacobi equation [6].

Theorem 4.3. Let be q0 ∈ M , L0 = T ∗q0M and Lt = expt(
−→
H )(L0). Then Lt is

a Lagrangian submanifold of T ∗M whose tangent space is spanned by Jacobi fields
starting from L0. Moreover q(tc) is geometrically conjugate to q0 if and only if
expq0,tc is not an immersion at p0.
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Under generic assumptions, the following theorem connects the notion of conju-
gate time and the local optimality of extremals, see [7, 1, 12].

Theorem 4.4. Let t1c be the first conjugate time along z. The trajectory q(.) is
locally optimal on [0, t1c) in L∞ topology; if t > t1c then q(.) is not locally optimal on
[0, t].

When the final target is a regular submanifold M1, the notion of conjugate time
is generalized as follows and the theorem 4.4 still holds.

Definition 4.5. Denote M⊥1 = {(q, p), q ∈M1, p ⊥ TqM1}. Then a time tfoc is said
to be a focal time if there exists a Jacobi field J = (δq, δp) such that δq(tfoc) = 0
et J(tfoc) is tangent to M⊥1 .

Therefore, evaluating the local optimality of an extremal curve consists in com-
paring the transfer time and the first conjugate time along the extremal. The
numeric methods we use to compute energy-minimal trajectories from W s

α(S3
h) to

Wu
α (S3

h) are implemented in the COTCOT, see [6]. Fixing an initial condition z0 and

integrating numerically the Hamiltonian vectorfield
−→
Hr, we can, using a Newton-

type algorithm, find a zero of the shooting function S : η0 → γ(v(tf , v0, η0)) and
henceforce compute an extremal curve solution of the Maximum principle. We ini-
tialize the Newton algorithm using the initial adjoint vector η∗0 corresponding to the
optimal trajectory of the linearized case which is numerically computed following
the method described in the section 3. Since the target Wu

α (S3
h) is a 3-dimensional

submanifold of R6, the first focal point is evaluated integrating backward the de-

rivative
−→
Hr. The submanifold Wu

α (S3
h)⊥ being 6-dimensional in R12, so is the tan-

gent space Tv(tf ),η(tf )W
u
α (S3

h)⊥. We consequently consider the 6-dimensional vec-
tor space spanned by the Jacobi fields Ji(t) = (δvi, δηi) for i=1,. . . ,6 such that
Tv(tf ),η(tf )W

u
α (S3

h)⊥ = Span{Ji(0), 1 ≤ i ≤ 6}. A time t is then a focal time if
rank(δv1(−t), . . . , δv6(−t)) is lower than or equal to 5.

In the numerical computations we perform, the spacecraft’s mass is assumed to
be 350 kg, µ is set to 0.012153, h is set to 1.58 and we make the parameter α
vary in order to evaluate how far the invariant manifolds structure extends. In
figures 2 and 3 are respectively displayed the projections on the (p1, q1)-plane of
the energy minimal extremal trajectories (where the axes are tilted by 45 degrees
to be coherent with figures from [9]) and the norm of the corresponding extremal
control for different values of α. In figure 4, the transfer time and the first focal
time corresponding to the same values of α are compared.

Our numerical results show the efficiency of initializing the simple shooting
method using the initial adjoint vector η∗0 corresponding to the linear case. We
thus compute extremal trajectories, whose local optimality is ensured by the sec-
ond order condition, from W s

α(S3
h) to Wu

α (S3
h) for values of α higher than 1.5. Note

that this treeshold, sending back in the initial resticted 3-body coordinates, approx-
imatively corresponds to 80 percent of the distance from the collinear point L1 to
the Moon. Expressing the norm of extremal control in units of force, we can deduce
from figure 3 that the maximal thrust needed to reach the unstable manifold from
the stable one is contained between 0.4 and 0.1 Newton. It appears in figure 2 that,
as we expected, the free dynamics in the invariant manifolds plays an important
role in energy-minimal transfers in the Earth-Moon system. Indeed, the bigger is
α, the longer the spacecraft follows the stable manifold before reaching the insta-
ble one; however bigger seems to be the maximal thrust because of the closeness
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with L1. Let us point out that, for a fixed value of α, we can, in a certain extent,
reduce the maximal thrust needed to achieve the transfer by making the transfer
time tf increase. In figure 5, we display the evolution of the norm of the extremal
control for different values of tf and α = 1. However, computations show that when
the transfer time is too long, the condition tf < t1foc is no more satisfied whereby
extremal trajectories lose their optimality.
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Figure 2. Projections of energy-minimal trajectories on the
(p1, q1)-plane (axes tilted 45 degrees).
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Figure 3. Norm of extremal controls.

5. Conclusion. Basing on previous studies concerning dynamics in the restricted
3-body problem, we provide in this article an efficient procedure for initializing a
numeric indirect method in optimal control and computing energy-minimal transfers
in the vicinity of the Lagrangian point L1. We show that, from the optimal control
theory point of view, invariant manifolds in the equilibrium region play an important
role for envisioning transfers from the Earth’s gravity area to the Moon’s gravity
one. Besides, this work is a good example of a powerfull application of geometric
control theory combined with numerics methods.

α 0.05 0.6 1.5
tf 0.524 0.996 1.4
t1foc no focal time in [0,2tf ] 1.6 no focal time in [0,2tf ]

Figure 4. Comparision between the transfer time tf and the first
focal time t1foc along extremals.
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Figure 5. Norm of extremal control corresponding to different
transfer time for α=1.
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