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Population genetics and
Markov chains

8.1 GENES AND THEIR FREQUENCIES IN
POPULATIONS

Chromesomes, which contain hereditary material, are located in the nuclei of
the cells of living organisms. In diploid organisms, the chromosomes
occur in pairs. For example, the nuclei of human cells contain 23 pairs of
chromosomes, whereas those of dogs have 39 pairs. Sections of chromosomes
that determine, by means of very complex chemical reactions, certain
properties of an organism are called genes.

Genes may be in different forms at a given location, or locus, on a
chromosome, and the different forms are called alleles, For example, in a
diploid organism with two alleles labelled Ay A, we may have the so called
genotypes A\ A, A;A, ALA, or A,A, as illustrated in Fig. 8.1. It is usually
assumed that A|A, and A, A, give rise to the same properties. Individuals with
both genes the same (A,A, or A3A,) are called homozygous, whereas
individuals with different genes (AyA, or A,A,) are called heterozygous. Note
that nearly all the cells of an organism have the same chromosomal structure.

.

Figure 8.1 Schematic representation of a cell, its nucleus and chromosome pairs. On
the right of the figure a chromosome pair is magnified to show possible genotypes at a
particular locus.
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In some reproductive processes (e.g. human) the chromosome pairs
of the offspring contain one chromosome from each parent. Population
genetics concerns itself with the numbers of genes of various types in popu-
lations, usually with a view to studying their changes from generation to
generation.

Frequencies

Consider a population of N diploid individuals. At a particular locus there are
atotal of 2N genes. Let there be N individuals of type A;A,, N, of type AA,
or A;A; and N; of type A, A,. The genotype frequencies are the fractions of the
numbers of genotypes of each kind. We define

f= N,/N
g=N,/N
h=N,/N,
and observe that
fH+g+h=1
If we count the numbers of genes of each kind we see there are
p=2N,+N,
of type A,, and
g=N,+2N,

of type A,. We define the gene (or allele) frequencies as the fractions of the
numbers of genes of each kind:

x=p/2N
y=4¢q/2N.
We see that the relations
2N, +N,
=———==f+¢g/2 8.1
N f+a/ (8.1)
N, + 2N,
=—=— "=g/2+h 8.2
y AN g/2 + (8.2)
x+y=1,

must hold.

It should be noted that populations with different genotype frequencies may
have the same gene frequencies. To illustrate consider a population of 20
individuals of which 10 are A|A, and 10 are A,A,. Then the genotype
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frequencies are
f=1/2, g=0, h=1/2,
while the gene frequencies are
x=y=1/2.

If on the other hand there are 5A,A,, 10 A;A, and 5 A,A,, the gene
frequencies are the same, but the genotype frequencies are now

f=1/4,  g=12, h=1/4

The factors affecting the evolution of gene frequencies

We will see in a simplified picture that in ‘infinite populations’ of individuals
which mate randomly, the gene frequencies remain constant. This is contained
in the Hardy—Weinberg principle which we will prove in the next section. In
finite populations, however, there is so called random drift which leads
eventually to the elimination of the heterozygous genotypes. The model we use
to study this phenomenon is a2 Markov chain and we will discuss the general
introductory theory of such processes. We will then see how the properties of
the Markov chain are altered when the genes themselves may change from one
form to another (mutation). The remaining forces of evolution, namely the
selective advantages of some genes over others (selection) and the influx or
efflux of individuals (migration) will not be discussed here. The reader may
consult Crow and Kimura (1970) or Ewens (1979) for in-depth mathematical
treatments. For a fascinating account of the basic biology and biochemistry
the work of Watson (1970) will be a delight to read.

8.2 THE HARDY-WEINBERG PRINCIPLE

If a population is infinite we may interpret the genotype and gene frequencies
as bona fide (actual) probabilities. We observe such a population as it evolves
in time and let the genotype frequencies at generation n be f,, g, and h, and the
corresponding gene frequencies be x, and y,, where n=0,1,2,.... We then
have the following.

Theorem 8.1 (Hardy—Weinberg principle) In an infinite, randomly mating
diploid population, for genes at a single locus with two alleles, the gene
frequencies do not change from generation to generation. Further, no matter
what the initial genotype frequencies, the genotype frequencies at the first (» = 1)
and subsequent generations are fixed and determined only by the initial gene
frequencies.
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Tal?le 8.1 Possible matings, their probabilities and the conditional probabilities of
various offspring genotypes (A,;A, = A,A, or A,A)).

Mating Pr(M;) Pr(AA||M) Pr(AA,|M) Pr(AA,IM,)
Male Female B

M, AA AA S}
M, AA; AA, Sodo
M; AA A, Sfohe
M, AA, AA, Jogo
Ms AA, AA, gtz)
Mg AA, AA, goho
M; AA; AAL fohg
Mg  AA, AA, goho
My AA;, AA, K

OO O OhrN- O N
[ Y N N N N O )
—_—Ne OO OO0 O

In symbols this becomes
(@) x,=x0, Yo=Y, n=1,2,3,...
(b)j;v':fls &= h,=h,, n=23,...
(¢) fi» &, and h,; depend only upon x,,.

Proof I_n the population under consideration the various possible matings are
shown in Table 8.1. Since both male and female parents may be any of three
genotypes there are 9 possible combinations, denoted by M »i=12,...,9
The.probabilities of occurrence of the different matings are found’ a’s in,tl;e
following example. The probability that an offspring of the first generation has
an A;A, male parent is f,, and this is also the probability it has an A,A
fe'maille parent. Hence the probability that a mating is of type M, is lf"'l
Similarly .the remaining entries in the third column of Table 8.1 arelfound(.).
Now, given tl'lat the mating is of type M, the conditional probability of an
A ,.A‘ qffspnng is 1 etc. The matings M, M, are mutually exclusive and their
union is the whole sample space. Hence by the law of total probability, the
probability that an offspring in the first generation is AA s ’

f1=Pr{member of first generation is A,A,}
9
= i; Pr(member of first generation is A,A,|M,) Pr(M))

=f3 + fodo + g95/4
=(fo +g0/2)
Using (8.1) we get
fi=x3 (8.3)
Similarly,
g, = Pr(member of first generation is A;A,)
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=f0od0 + foho + goho + 95/2
=2(fo + 90/2(g0/2 + ho),
so that, from (8.1) and (8.2),

g1 = 2XoYo-
Also,
h, = Pr(member of first generation is A,A,)

= g3/4 + goho + hj

=(go/2 + ho)’

=5
Thus we have established that the genotype frequencies in any generation are
completely determined by the gene frequencies in the previous generation,
regardless of the genotype frequencies in the previous generation (part (c)).

Furthermore, the frequency of A, in the first generation is, from (8.1),

. xy=fi+ag,/2
= x5+ XoYo
= Xo(Xo + Yo)
= Xg.

Hence x, = x, and y, = y,. Hence the gene frequencies in any generation must
be the same as those in, the preceding generation (part (a)). Part (b) follows
because f, (=x3 fron$(8.3)) is determined by x, and x, = x, and so on, for
f3fa--.. This completes the proof of the above form of the Hardy-Weinberg
principle.

Because the gene frequencies never change and because the genotype
frequencies are constant from the first generation onwards, the population is
said to be in equilibrium or Hardy—Weinberg equilibrium for the gene under
consideration.

An example from human genetics

The following data obtained in an actual experimental study (see Strickb.e‘rge'r,
1968, Chapter 30) lend support to the existence of Hardy-Weinberg equilibria
in nature.

When human red blood cells are injected into the bloodstreams of rabbits, an
immune reaction occurs (production of antibodies) in the rabbits. However,
the blood from various humans leads to different reactions and the three
different human genotypes MM, MN and NN can be classified. In a group of
104 North American Indians there were found to be 61 MM, 36 MN and 7NN
individuals.

Let x be the frequency of the M allele and let y=1—x be the frequency of

okt th»..\
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the N allele. If the gene under consideration is in Hardy—Weinberg equili-
brium, the genotype frequencies for MM, MN and NN should be x2, 2xy and
y? respectively. We will calculate the gene frequencies and see if the genotype
frequencies are as predicted by the Hardy~Weinberg formula.

From the data we find

x = (122 4 36)/208 = .7596

and y = .2404. Under the hypothesis of a Hardy—Weinberg equilibrium, the
expected numbers of MM, MN and NN are obtained by multiplying 104 by
the genotype frequencies x?, 2xy and y2. This gives 60.01, 37.98 and 6.009,

respectively.
The value of the chi-squared statistic is
2_ (60.01 —61)? + (37.98 — 36)° + (6.009 — 7)*
60.01 37.98 6.006
=0.283.

There are three terms in the sum but one degree of freedom is lost because we
estimated x from the data, and another degree of freedom is lost because the
numbers of genotypes must add to 104. Thus there is one degree of freedom for
chi-squared and from tables we find Pr {x? > 3.842} = .05. The observed value
of chi-squared is safely less than the critical value at the .05 level of significance,
lending strong support to the existence of a Hardy—Weinberg equilibrium,

83 RANDOM MATING IN FINITE POPULATIONS:
A MARKOV CHAIN MODEL

In the previous section an infinite randomly mating diploid population was
considered. The frequencies, or probabilities of occurrence of two alleles at a
single locus were found to be constant.

We now wish to study the behaviour of gene frequencies in a finite
population of N diploid individuals. Again we concentrate on a single locus
with genotypes A A, A, A, and A,A,. The total number of genes is fixed at 2N
in all generations, it being assumed that the total population size is constant in
time.

Notation
We introduce the following notation:

X, = the number of A,-genes in the nth generation, n=0,1,2,...

Thus there are 2N — X, genes of type A, in generation n.
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Random mating assumption

Randomness enters the model as follows. The 2N genes of any generation are
chosen randomly from those in the previous generation in 2N Bernoulli trials
in which the probability of a given gene (A, or A,) is equal to its frequency in
the previous generation.

Thus the number X, of A,-genes in generation » is a random variable and
the whole sequence X = {Xq, X, X,...} is a discrete-time random process.
Since the possible values of the X, consist of the discrete set {0,1,2,...,2N}, X
has a discrete state space. The process X is a Markov chain.

Transition probabilities

Suppose we are given that X, =j. We ask, conditioned on this event, what is
the probability that X, ., = k. Since by the above random mating assumption,
X, +1 is a binomial random variable with parameters 2N and j/2N, we have

- . IN s \k . \2N-k
R

jk=0,1,2,...,2N.

This set of (2N + 1) quantities is called the one-step transition probabilities.
They can be arranged,as a matrix P with elements

Pi=Pr{X,., =k|X,=j}.

Before investigating the properties and behaviour of this genetical random
process we give a brief introduction to the general theory of Markov chains.

(84)

-

84 GENERAL DESCRIPTION OF MARKOV CHAINS

Let X = {X,,n=0,1,2,...} be a discrete-time random process with a discrete
state space & whose elements are s, , s,,... . We have seen that X is a Markov
chain if for any n > 0, the probability that X, ., takes on any value s, is
conditional only on the value of X, (and possibly n) but does not depend on the
values of X,_,,X,_3,.... This leads to the introduction of the one-time-step
transition probabilities

pj,‘(n)=Pr{X,,+1=s,,|X,,=sj}; j,k=l,2,..., n=0,1.,2,... (8.5)

We have allowed here for the possibility that the transition probabilities may
depend on n. When they do not, they are called stationary and the process is
referred to as a temporally homogeneous Markov chain. When they do depend
on n, the term nonhomogeneous Markov chain is used. All the Markov chains
we will consider later are temporally homogeneous.
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Since X, is a random variable, which we refer to as the initial value, we
introduce its probability distribution

p{0)=Pr{Xo=s}, j=12,... (8.6)

We will now prove the following,

Theorem 8.2 The set of one-time-step transition probabilities (8.5) and the
distribution of X, given by (8.6) completely determine the joint distribution of
{Xo0s X15:++5 X,} for any n > 1.

Proof We will first prove this forn=1and n=2.

n=1.

We have, for any j, k, by definition of conditional probability,

Pr{Xo =SJ,X1 =Sk}
Pl‘ {Xo = Sj} ’

Pr{X,=slXo=s;}=

On rearranging this,
Pr{Xo=s;,X,=8}=Pr{Xo=s} Pr{X,=5/Xo=s5;}
= p0)p(1). (8.7)
n=2
Again by definition of conditional probability
PI‘{X0=SJ,X1 =Sk,X2=Sl}

Pr{X,=slX,=5,Xo=5;} = Pr{X,=s,Xo=5;} ’
» X0 =5

SO

Pr{XO=Si,X1 =Sk,X2=Sl}
=Pr{X,=5,Xo=5;}Pr{X,=5|X,=5,X,=5;}.

But Pr{X,=s|X,=5s,Xo=5;}=Pr{X,=s5|X,=s,} by the Markov
property and so, using (8.7) as well we get

Pr {Xo =S X,=5,X,= S;} = Pj(O)ij(l)Pm(z)-
This is generalized easily to n > 2 (see Exercise 2).

8.5 TEMPORALLY HOMOGENEOUS MARKOV CHAINS

Ifa Markov chain is temporally homogeneous and there are M possible states
(i.e. possible values of X), then

pjk=Pr{X"+l=Sk|Xn=Sj}; j,k=1,2,...,M, (8.8)

regardless of the value of n.
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Definition The matrix P whose elements are given by (8.8) is called the
transition matrix of the Markov chain.

Properties of P

Writing out the array P we have

P11 Pz - Pim
P= P.zl P'zz P%M
Pm1 Pm2 - PmM

It is seen that P has M rows and M columns. Every element of P satisfies the
non-negativity condition

pu=0. 8.9)

Also, the sum of the elements in each row of P is unity. That is,
o
Y pp=1 j=1,...,M. (8.10)
k=1

A square matrix whose elements satisfy (8.9) and (8.10) is called a stochastic
matrix.

The probability distriliition of X,
The M quantities
p;i(0)=Pr{X,=s;}
can be arranged as the components of a row vector:
P(0) = [p1(0) p2(0)--- par(0)]
Similarly, for X,, n > 1, let

p{n)=Pr{X, =5},
and
P(n) = [py(n) pa(n)--- ppglm)].

We now prove the following.

Theorem 8.3 The probability distribution of X,,, n > 1, is given in terms of that
of X, by

p(n) = p(O)P" |, 8.11)

where P is the transition matrix of the Markov chain.
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Proof We proceed by induction, first showing that (8.11) is true for n= 1.
If the value of X, is s,, the value of X, will be s; only if a transition is made
from s, to s;. The events ‘Xy =s,,k=1,2,..., M’ are mutually exclusive and
one of them must occur. Hence, by the law of total probability
M
Pr{Xl =SJ} = kzl Pr {XO =Sk} Pr{Xl =Sj'X0 =sk},
or
M
pi)= X POPy  j=12,...M. (8.12)

Recall now that if A is an m x n matrix with element a;; in its ith row and jth
column, and if B is an n x p matrix with general element b;;, then the m x p
product matrix C = AB has general element

cU:,‘Zla"‘bkj; i=1,2,...,m; j=],2,...,p.

From (8.12),

p(1) = p(O)P.
Assume now the truth of (8.11), for some n > 1. Clearly

M
Pr{X,.,=s;}= kzl Pr{X,=s}Pr{X,.,=s]X,=5/,

or,

M

pin+1)= kzl Pu(n)py .
In terms of vectors and matrices this becomes
p(n + 1) = p(n)P
= p(O)P"P,

because we have assumed (8.11) is true. Since P"P = P"*!, we find

p(n + 1) = pO)P"* ..

This completes the inductive proof as it follows that B.11)istrueforalln>1.

The matrix P" also has M rows and M columns. Its elements, denoted by pi?,
are called the n-step transition probabilities since they give the probabilities of
transitions from s; to s, in n time steps. It is left as Exercise 3 to prove the

Chapman-Kolmogorov forward equations

M
+
"= 3 PP

k=1



158  Population genetics and Markov chains
8.6 RANDOM GENETIC DRIFT

We now return to study the Markov chain of Section 8.3 in which X, is the
number of genes of type A, in a randomly mating population of size'N. The
state space & contains 2N + 1 elements which are just the integers
0,1,2,...,2N. The elements of the transition matrix are given by (8.4):

_ 2N ] k J 2N-k. -
p,-k—<k>(m) (l—m) 5 jk=0,1,...,2N.  (8.13)

Thus P has 2N + 1 rows and 2N + 1 columns, and in Exercise 8.4 it is shown
that P is stochastic. For N = 1 the transition matrix is

400
P=4(1 2 1}
00

25%6 0 0 0 0
81 108 54 12 1

P=z|16 64 9 64 16 (8.14)
1 12 54 108 81

+~ L0 0 0o o 25

Recall now that individuals with A;A; or A,A, are called homozygous
whereas those with A, A, are called heterozygous. We will see, first heuristi-
cally by a numerical example with N =2, that a finite population of
individuals which mate randomly according to our assumptions, evolves to a
state in which there are no heterozygous individuals. Note that for a
population of size N consisting of only homozygous individuals, the number of
A, alleles is either 0 (corresponding to all A,A,) or 2N (all AA,).

We choose a probability distribution for X, so that the probability that the
population is homozygous is zero:

pPO)=[0 % 4 % 0]

We now compute p(1) = p(0)P by matrix multiplication to find the probability
distribution of X,. This gives

p(1)=[0.1113 02422 0.2930 0.2422 0.1113]
Similarly, the distribution of X, is given by p(2) = p(1)P = p(0)P%
p(2)=[0.2072 0.1868 0.2121 0.1868 0.2072]

The probability distributions of the number of A,-alleles in the next four

When N =2 we find .
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generations are found to be as follows:

p(3)=[0.2803 0.1406 0.1583 0.1406 0.2803]
p(4)=[0.3352 0.1055 0.1187 0.1055 0.3352]
p(5)=[0.3764 0.0791 0.0890 0.0791 0.3764]
p(6)=[0.4073 0.0593 0.0667 0.0593 0.4073].

Figure 8.2 shows sketches of the distributions of X X1, X
It can be seen that by the third generation (n = 3) there is more probability

=
pre—
]
benf
3
n
N

l I I I n=4
r
l X 1 I n=5
l T I T n==6
X >
n

Figure 8.2 Evolution of the probability distribution of the number of A, genes in the
text example.
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mass concentrated at the homozygous states than in the heterozygous states.
This contrasts with the situation in the initial population in which the
probability of homozygous states was zero. By the sixth generation ‘the
probability that the population is homozygous has grown to 0.8146.
Eventually, there is zero chance that the population is heterozygous, even if it
started as heterozygous with probability one.

This tendency for a population to become homozygous is referred to as
random genetic drift or just random drift. It was first studied theoretically by
the pioneering population geneticists R.A. Fisher and Sewall Wright. This
phenomenon is in direct contrast with the Hardy—Weinberg prediction of
constant gene frequencies in infinite populations. It is purely due to the
random sampling of gametes (egg and sperm cells) from a parent generation to
form the individuals of the next generation. However, it only occurs in finite
populations and the smaller the population (N), the faster is the approach to
homozygosity; or, as population geneticists say, the faster do the genes become
fixed in the population (all A A, or all A,A,).

Provided the assumptions which led to this theoretical prediction are
fulfilled, we expect in small populations that after a few generations there is a
large chance of having all homozygous individuals. In large populations the
drift will proceed more slowly. The fact that nearly all Chinese have the same
black hair colouring, the same brown colour eyes, etc., probably means that
the population has been around a very long time and a state of homozygosity
has been reached forthe genes controlling these physical characteristics.

8.7 MARKOV CHAINS WITH ABSORBING STATES

Let {X,,n=0,1,2,...} be a temporally homogeneous Markov chain with
state space & containing elements s,,s,,.... Suppose it is possible to get from
state s; to state s, in a finite time; that is, plf’ > 0 for some n. Then we say that
state s, is accessible from state s;, or s, can be reached from s;. If s; is also
accessible from state s, we say that states s; and s, communicate. A state may, of
course, communicate with itself.

However, some states may act as traps so that once entered they cannot be
left, as for example in the random walk of Section 7.3. If s; is such a state, then
p;;= 1 and s is called absorbing. The jth row of the transition matrix will then
consist of all zeros except for the 1 in columnj. There may be just one or several
absorbing states.

Absorption is certain

We make the following assumptions concerning the states of a temporally
homogeneous Markov chain.
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Assumptions

(Q) "g:e state space & = {$1,82,...,5y} contains a finite number of elements,
ii) The statqs inthe set o = {s,,s,,...,s 4}, where 4> 1, are absorbing. That
is, there is at least one absorbing state.

(iii) At least one of the absorbing states is accessible from any member of the
set B={54.y,...,5) of non-absorbing states.

We now prove the following.

Theorem 8.4 Under the above assumptions,

Pr{X,esf} — 1.
R—+ 0
That is, absorption of X in one or other of the absorbing states is certain.

%r;oof If Xoeof there is nothing to prove, since X is already absorbed.
ereI:ore, let X,e4%. By fissumption there is at least one state in .« which is
;ccessxbl; frorrcll any state in #. Hence, there is a state s, .9 which is accessible
om 5,4, a
oo d »and so we may define ny, < oo as the smallest number n such that
| F?r a given state s; let n; be the largest of the collection of n i« as k varies and
et n’ be the largest of the n ;as j varies. After n’ time steps, no matter what the

initial state of the process, there is a ili isi
i s probability p > 0 that the
absorbing state. Hence & processisinan

Pr{X,e®}=1-p

and 0<(1—p)< 1. It follows by tem i
poral homogeneity and the M
property that Pr{X,,e®#} <(1 — p)? and, in general, ’ © Markov

Pr{X,,e®B}<(1-p), k=1,2,...
Since as k— oo, (1 — p)* — 0, we see that Pr {X.€®} > 0as n— co. This proves
that the process must eventually end up in one of the absorbing states.

Theorem 8.4 and the above proof are based
and Suell (1950 on Theorem 3.1.1 of Kemeny

Example 1

For the Markov chain of Section 8.3 in which X,i

i . . » 15 the number of genes of type
A, in generation n, the Yalues 0 and 2N are absorbing since pgy, = 1 ::d
Pan2v=1. The assumptions of Theorem 8.4 are fulfilled and it follows

immediately that absorption in one or the oth i
er of the absorbing st
eventually occur. That is, B states must

Pr{X,=0uX,=2N} —1.
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Example 2

Consider the simple random walk of Section 7.3 where X, is the ‘position of
the particle’ or a ‘gambler’s fortune’ at epoch n, with absorbing barriers at 0
and c. The elements of the transition matrix of this temporally homogeneous
Markov chain are, for j=1,2,...,c—1,

Pu=Pr{X,.,=klX,=jl=1q, ifk=j—1
0, otherwise,

whereas
Poo= 1,
p0k=01 k=1,.-.,c,
pc,k=0: k=0....,(‘—1,
PL‘C=
Thus P has ¢ + 1 rows and ¢ + 1 columns and has the form
(1 00 0 - - - 0
g 0 p 0 - - -0
0 g 0 p 0
P=|0 0 g 0 p
5 g 1 3 ~ 0
: - q 0 p
oo 0 - - 0 0 1

It is intuitively clear that the absorbing states are accessible from any of the
non-absorbing states, 1,2,...,c¢ — 1. By Theorem 8.4 absorption at 0 or c is
certain as n— oo, a fact that we proved by a different method in Section 7.5.

8.8 ABSORPTION PROBABILITIES

Given a temporally homogeneous Markov chain which satisfies assumptions
(i)-(iii) of the previous section, we have seen that the process must terminate in
one of the absorbing states. If there is more than one absorbing state we may
wish to know the chances of absorption in the individual absorbing states.
For example, in the Markov chain model which displays random genetic drift,
we would like to know the probability that the population ends up having all
individuals of genotype A, A, as opposed to all A,A,. We thus require the
absorption probabilities for the various absorbing states. In this section we
show how to calculate these probabilities as functions of the initial value of the
process.

If states s,,...,s, are absorbing and there are M states altogether, the
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transition matrix can be put in the form

1 2 - - A | A+1 M
1 1 0 0o 0 0
2 0 1 0 0 0
P= A 1 0 - X i 0. 0 |@B19
A+1 | Beess * = * Pidsa E Pavi,a+1 Pa+1.m
M L pma © °  Puma '\ Pma+i T Pmwm ]

Introducing the (M — A) x (M — A) submatrix

Pav1,4+1 . Pa+1.m

Paroa+1 o Pumom

and the (M — A) x A submatrix
Pa+ia R 2 Pa+1.4
R=| (8.16)
Pua T Pr.a

the matrix P can be partitioned as

where I'is an A x A identity matrix and 0 is an 4 x (M — A) zero matrix. The
elements of Q are the one-step transition probabilities among the non-
absorbing states, and the elements of R are the one-step transition proba-
bilities from non-absorbing to absorbing states.

We now define the matrix IT whose elements are the required absorption
probabilities:

n; = Pr{process is absorbed in state
sy€.of |starts in s;e B} (8.17)

It is seen that IT has (M — A4) rows and A columns. We introduce the matrix

o=1-Q |,
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which is called the fundamental matrix of the Markov chain, where here Iis an
identity matrix with the same number of rows and columns as Q. In terms of ®
and the matrix R defined by (8.16) we have the following result.

Theorem 8.5 The matrix whose elements are the absorption probabilities (8.17)
is given by

IT=®R

Proof From the state s;e 4 the process goes at the first time-step to state 5,9
with probability p;;. Allowing for these possible first transitions we have

M
my = 3 p; Priprocess is absorbed in state
i=1

sp|starts in s;). (8.18)

Allowing for the contingencies

. - . 1, 5p==5,
Pr {process starts in state s; and is 0 sle d" -
= = 5 S
. 1 , i ) i k>
absorbed in state s, lﬂup ) I

equation (8.18) becomes

M
Tp=Pp+ DaPiMw J=A+L... .M k=1,...,4 (819
i=A+1
But py.j=A+1,....M;k=1,...,A are the elements of R, whereas p;,

j=A+1,...,M:i=A+1,...,M are the elements of Q. Hence, in matrix
notation, (8.19) becomes

IM=R+ QII
Rearranging and being careful to preserve the order of matrix multiplication,
(1—Q)I=R.
Premultiplying both sides with the inverse of (I — Q) gives
M=I-Q) 'R,

which proves the theorem, since ® =(I— Q)™ 1.

Example 1

Consider the Markov chain model for the numbers of A -genes in a (self-
fertilizing) population with N = 1. The possible values are 0, 1, 2. The matrix of
probabilities of transitions among the non-absorbing states consists of a single

entry,

Q=[pnl= ['é}

Absorption probabilities 165

The matrix of probabilities of transitions from non-absorbing to absorbing
states is .

R=[piopi2]= [241.
Then
I-Q=[1]
®=(1-Q) ' =[2] (8.20)
Thus, from Theorem 8.5, the absorption probabilitics are

and

n:[“mﬂl:] =OR

= (341

Example 2

Let a simplfa random walk be restricted by absorbing barriers at 0 and ¢ = 3
The transition matrix is

01 2 3

01 0 0 0
P=1|q 0 p 0
210 g 0 p
300 0 0 1

The matrix Q is given by

Qz[f’n P12]=[0 P
P21 Pa3 g 0Ff

and

Then
a- Q)=[
—q

Recall that the inverse of a general 2 x 2 matrix

is

N 1 d —b
Al [ ] ad — be #0,

=ad—f-)-(‘ —c a

as can be checked by showing A7'A =AA "' =1.
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Hence the fundamental matrix for this Markov chain is

O] [1 P} (8.21)
l—pglq 1

The probabilities of absorption into states 0 and 3 are, by Theorem 8.5,

nz[”m jlr13,:|=(|:,R

Moo Ta3

“aale Lo o)
“1-pglq 1[0 p

2ol ]
l—pglq* p

In the exercises it is confirmed that the probability of absorption (P,) at zero
for an initial value a, as given by formula (7.17) with ¢ =3, agrees Wilh the
values of 7, , and 7,,. The row sums of I are unity, since absorgtlon into one
or the other absorbing states is certain. This is also confirmed in Exercise 7.

Example 3
Consider the Markov chain model for the number of A, genes but now let the
population size be N =2. The state space consists of 0,1,2,3,4 and the
transition matrix is given by (8.14).
The matrices Q and R are
P11 P12 P13
Q= |p21 P22 P23
P31 P32z DPas

108 54 12
—isl64 96 64 |,
12 54 108

Pio Pia
R=|p0 P2
P30 Pia
81 1
16 16 |.
1 81

|H

(8]
)
|

Thus
148 —54 —12
I—Q)=3ic|—64 160 —64].
—12 —54 148

iy

L L &

The mean time to absorption 167

Toinvert this matrix by hand to find @ is too messy. However, it will be readily
verified (see exercises) that the solutions of the equations

(I-QIT=R,
with
Tio Mg
M=|my =y,
T30 Tag
are
31
nm=%i2 2|
1 3
In fact the general result with a population of size N is
k k

Teo=1— k=1,2,...,2N—1, (822

as will also be seen in Exercises 8 and 9.

89 THE MEAN TIME TO ABSORPTION

For the Markov chain with transition probabilities given by (8.15) we would
like to have as much information as possible concerning the number of time
units required to reach an absorbing state from a non-absorbing state. This
length of time is of course a random variable which we call the time to
absorption.

In the population genetics example, the time to absorption of the Markov
chain is the time it takes for the heterozygotes to disappear completely from
the population. In the random walk with absorbing barriers, the time to
absorption is, in the gambling context, the duration of the game or the time
required for one player to go broke. In this section we obtain formulas for the
mean of the time to absorption.

We define the following two random variables.

Definition Let V;, be the number of times the non-absorbing state s, is occupied
until absorption takes place when the Markov chain starts in the non-absorbing
state s;, The collection of N, forms the (M — A) x (M — A) matrix N,

Definition Let T be the total number of time units until absorption when the
Markov chain starts in the non-absorbing state 5je

The random variable T; is the time to absorption from state s;. The
collection of T}, with j=A+1,..., M, forms the 1 x (M — A) row-vector of
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absorption times for various initial states:
T=[Tg41Tgs2 Tul

Since the time to absorption is the total number of times that all the non-
absorbing states are occupied, the following relation holds between T; and the
Ny

M
T;= h_;+ 1 N (8.23)
The following result gives the expectation of T; as the sum of the elements in

the jth row of the fundamental matrix ®.

Theorem 8.6 The mean time to absorption from state s; is

M
E(Tj)= Z ¢jk ’ j=A+l,n.,M, (8.24)
k=A+1

where ¢, is the (j, k)-element of the fundamental matrix ®.
The equations (8.24) may be written in matrix-vector notation as

E(T) = ®¢

where £ is the (M — A) x 1 column vector
s 1
1

1

Proof The sketch in Fig. 8.3 depicts an initial state s; and the possible states s;
after the first transition. States 1,.. ., A are absorbing and are lumped together.
We will calculate E(N ), there being two separate cases to consider.

Case (i): k#].

If the first transition is to an absorbing state, then N = 0. Hence

J

A
N, =0  with probability ) p;.
. i=1

If the first transition is to a non-absorbing state s; then the total number of
times that state s, is occupied is N;,. Hence

Nz=N,  with probability p;, i=4+1,....M.
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ABSORBING STATES

state

—> time
n=20 n=1
Figure 8.3 Possible transitions from the initial state s

By the law of total probability applied to expectations (see Chapter 1), we
must have ’

M
E(N;)= ‘Z Pr {1st transition is from s; to s;}
=1

X E(N y/1st transition is from s; to sy).
The absorbing states contribute zero, so

4 M
E(N;)=0x z; P+ _=;+ 1 P;iE(N | 1st transition is from s; to s;).

But we have seen that

E(N ;|1st transition is from 5; 10 5) = E(Ny).

Hence, for k #j,
M

E(Ny) = i=AZ+ . PHE(Ny). (8.25)
Case (ii): k=j.
We have N ;=1 if absorption occurs on the first transition, so

A
Ny=1  with probability ) p;.
i=1



170 Population genetics and Markov chains
If the first transition is to a non-absorbing state s,, then

N;=1+N;  with probability p;.

Thus,
M
E(N;)= Y Pr{lst transition is from s; to s;}
i1

X E(N j;|1st transition is from s; to )
M

=1x 2,1 Pyt 2 Pl + E(Ny)

i=A+1
M
i=4+1

Introducing the symbol (Kronecker’s delta)

5. = 1, j=k,
R (N '3
equations (8.25) and (8.26) may be summarized as
M
E(Np)=6;+ Z PiE(Ny).
i=A+1
In matrix form, .
? E(N) =1+ QEN),
or
I-QEN)=L
Hence
EN)=®,
by definition of @ = (I — Q)~*. Combining this with (8.23),

M M
E(T]) = k=;+ 1 E(Njk) B k=;+ 1 ¢jk’
so the value of E(T}) is the sum of the elements in the jth row of ® as required.

Example 1

For the Markov chain model exhibiting random drift, when N = I, there is
only one non-absorbing state, corresponding to an A;A, individual. The
states are S, 5; and s,. The fundamental matrix is (see (8.20))

®=[2]

The expected time to absorption into either state s, or s, is, by Theorem 8.6,
the sum of the elements in the row of the fundamental matrix corresponding to

o bt o i i

s e 5

e
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the initial state. Hence the mean time to fixation (AjA; or AyA,)is
E(T))=2. |
That is, the mean fixation time is 2 generations.

Example 2
For the random walk with absorbing barriers at 0 and ¢ = 3, the fundamental

matrix is (see (8.21))
1 1 p]
O=—— .
1—pq [q 1

The expected value of T}, the time to absorption when X, = 1, is the sum of the
elements in the first row of @®:

1+p
1-pq’
Similarly, the expected time to absorption when X, =2 is

E(T)=

144
E(Tz)—q.
In Exercise 10 it is verified that these results agree with those derived
previously (equation (7.23)).

8.10 MUTATION

Genes can be changed by certain stimuli, such as radiation. Sometimes in the
‘natural’ course of events, chemical accidents may occur which change one
allele to another. Such alteration of genetic material is called mutation.

In this section we modify the Markov chain model of Section 8.3 to allow for
the possibility of mutation of A, alleles to A, alleles and vice versa. We will see
that this modification drastically alters the properties of the Markov chain.

Suppose that each A, allele mutates to A, with probability «, per
generation and that each A, allele mutates to A, with probability «, per
generation. By considering the ways in which a gene may be of type A, we see
that

Pr{a gene is A, after mutation}
=Pr{gene is A, before mutation}
x Pr{gene does not mutate from A, to A,}
+ Pr{gene is A, before mutation}
x Pr{gene mutates from A, to A}
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Thus, if there were j genes of type A, in the parent population before muta.ltiop,
the probability p; of choosing an A, gene when we form the next generation is

. j ’
pj=5’ﬁ(1 —a,)+ ( 1 —m>a2. (3.27)

Let X, be the number of A, alleles at generation n. Suppose in fact that th.ere
werej genes of type A, in generation n. We choose 2N genes to form generat{on
n + 1 with probability p; of an A and probability 1 — p;ofan A, at eac;h trl.al.
Then {X,,n=0,1,2,...} is a temporally homogeneous Markov chain with

one-step transition probabilities

Pi=Pr{X,,, =k|X,=j}

(8.28)
= (25)0’;)"(1 -p)*7%  jk=0,1,2,...,2N,

with p; given by (8.27). -.

Example
Let N =1, a; = a, =4 Then, substituting in (8.27),
.1
Pi=a™

4,p, =% The elements of P are, from (8.28), for

e
=3

w
0‘5.

2
~
o

I

B
)
=

o= £ Jrar=

2
Pk = (k)(%)z

=} )arer=

Evaluating these we obtain
9 6 1
P=%|4 8 4|
1 6 9

There are no absorbing states, as there are no ones on the principal' diagopal.
All the elements of P are non-zero, so at any time step a transition is possible
from any state to any other. We will see that in contrast to the case where'there
is no mutation, an equilibrium probability distribution is eventually achieved.
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811 STATIONARY DISTRIBUTIONS

Let P be the transition matrix of a temporally homogeneous Markov chain
{X,»n=0,1,2,...}. Suppose there exists a probability vector f (i.e., a row vector
with non-negative components whose sum is unity) satisfying

pP = p. (8.29)

Now let the probability distribution of X » be given by p(n) and suppose the
process starts with

p(0) = p.
Then we must have
P(1)=pOP=pP=p
P2) =p(1)P = pP = p,
and it can be seen that

p(n) = B,
foralln=0,1,2,...

We find that if the initial probability distribution is given by p, the
probability distribution of the process at each time step is the same. We call
such a probability distribution stationary or time-invariant. The random
variables X, X, X,,...are thus identically distributed if X o has the distri-
bution f.

Definition Let P be the transition matrix of a temporally homogeneous Markov
chain. If there exists a probability vector p such that p = pP, then p is called a
stationary distribution for the Markov chain.

Note on terminology

A vector x is said to be a (left) eigenvector of the matrix A if xA is a scalar (real
or complex) multiple of x. That is,

XA = Jx,

where 1 is a scalar called the corresponding eigenvalue. According to (8.29)
PP = 1p. Hence a stationary distribution is an eigenvector of P with eigenvalue
1. Any non-zero multiple of an eigenvector is also an eigenvector with the same
eigenvalue. To fix p we insist that its components sum to unity.

Example

Let the transition matrix of a temporally homogeneous Markov chain be

04 06
P—[O.Z 0.8]' (8.30)
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An eigenvector x = [x,x,] of P with eigenvalue 1 must satisfy

04 0.6

Le ] [0.2 08

:|= [x, x]
Thus
0.4x, +0.2x, = x,
0.6x, + 0.8x, = x,.
From the first (or second) of these equations we find
xz e 3x1.
Hence any multiple of the row vector
x=[1 3]

is an eigenvector with eigenvalue 1. To obtain a probability vector we must
divide by the sum of the components. Thus a stationary probability vector for
this Markov chain is

p=[025 075]=[p, p.].

8.12 APPROACH TO A STATIONARY DISTRIBUTION
ASn - o

Consider again the Markov chain with P given by (8.30). Computing
successive powers of P-we find

p2_[028 072
| 0.24 076
pa_[0256 0.744
| 0.248 0.752
pe_[ 02512 07488
| 0.2496  0.7504

It would seem, and we will see that it is true, that as n increases P" is
approaching, element by element, the matrix

P 025 0.75
1025 075

That is,
lim P"=P. (8.31)

n—ow

Note that each row of P is the same as the stationary probability vector p, so

[h b
P‘[m ﬁz]'

it i b
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In terms of matrix elements,

T
lim pf) = p,,
n—oaw

regardless of the value of j.

Let us see what happens, if (8.31) is true, to the probability distribution of X
as n— co, for an arbitrary initial distribution

p0)=[pi(0) p»(0)].

n

Since
p(n) = p(O)P",

we have

lim p(n) = p(0)P

n-—+oo

20 )
= 0 0
() )]I:ﬁl ﬁz]
=[P1(p1(0) + p2(0))  pa(p4(0) + p,(0))]
= [ﬁl ﬁll

since the components of p(0) must add to one. Thus

p(n) oo p

for an arbitrary initial probability distribution. Under these circumstances we
say that the distribution of X, approaches a steady-state distribution which
coincides with the stationary probability vector p.

The question arises as to what conditions guarantee the approach to a
steady-state distribution. Before stating the main result we make the following
definition.

Definition A Markov chain is regular if there is a finite positive integer m such
that after m time-steps, every state has a non-zero chance of being occupied, no
matter what the initial state.

Notation

If every element aj of a matrix A satisfies the inequality
ay >0

then we write
A>0.

Thus, for a regular Markov chain with transition matrix P, there exists an
m > 0 such that

P > 0.
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In Exercise 16 it is proved that
P">0=P"** >0, k=1,2,...

For regular Markov chains we have the following result concerning steady-
state distributions.

Theorem 8.7 Let X={X,, X;,...} be a regular temporally homogeneous
Markov chain with a finite number M of states and transition matrix P. Then,

(i) Regardless of the value of j=1,2,...,M,
limpR=p,, k=12,...,M.

or equivalently,
(i) lim P"=P,
n=*ow

where P is a matrix whose rows are identical and equal to the probability vector
p=[p1h2 - Pul

(iii) No matter what the probability distribution p(0) of X, the probability
distribution of X, approaches p as n— co:

p(r)—p

(iv) f is the unique glution of

pP=p
satisfying p> 0 and X, p, =1.

For a proof see Kemeny and Snell (1960) or Feller (1968). Note that in the
terminology of Feller a regular Markov chain is irreducible, aperiodic and
has only ergodic states. The terminology for Markov chains is confusing as
different authors use the same word with different meanings as well as several
different words for the same thing. It seemed best to avoid these altogether in
an introductory treatment. A matrix A satisfying A™ > 0 for some positive
integer m is called primitive. The theory of such matrices is well developed,
including the useful Perron-Frobenius theorems. See, for example, Seneta
(1983).

Example 1

For the population genetics example of the previous section

9 6 1
P=4[4 8 4
169

Approach to a stationary distribution 177

Since P >0 we see from Theorem 8.7 that a steady-state probability distri-
bution will be approached as n — co. To obtain the stationary distribution we
must find a left eigenvector of P with eigenvalue 1 whose components add to
unity.

Any eigenvector x =[x, x, x,] with eigenvalue 1 must satisfy xP = x.

Hence
9 6 1
[x, x; x31|4 8 4|=16[x;, x, x3].

1 6 9

This yields three equations, of which only two are needed. The first two
equations are
9x1 + 4x: +X3 = 16x1
6x; + 8x, + 6x3 = 16x,,
or
7x1 —4xZ—X3=0
—6xl +8x2 —6X3 =0.
Since one of the combonents of x is arbitrary we may set x; =1 and solve
7x 1 4x2 = l
— 6x 1 + 8x2 =6.
This yields x; =1,x,=3/2 and x;=1 so any left eigenvector of P with
eigenvalue 1 is a non-zero multiple of
x=[1 3/2 1].
The sum of the components of x is 7/2 so dividing x by 7/2 we obtain the
required stationary probability vector

p=02/7 3/7 2/7]

For any initial probability vector p(0), the probability distribution of X,
approaches f. In particular, even if the population starts with say, all A, A, so

pO=[0 0 1],

there is probability 3/7 that the population will eventually be heterozygous.
Compare this behaviour with random drift.

Example 2

This example, from Ash (1970), shows that a stationary distribution may exist
but this does not imply that a steady-state is approached as n— oo.
Consider a Markov chain with two states and

r=[ o]
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so that transitions are only possible from one state to the other. Solving

xP=x
or,

01
[xl xZ][I 0]"—"[X1 xz]

ives x, = x,. Hence
2 1

p=0 1

is a stationary probability vector. However, as n — oo, P" does not approach a
constant matrix because

[(1) (1)], n=1,3,5,...
P=

10
[0 l]’ n=24,6,...

The conditions of Theorem 8.7 are violated, this not being a regular Markov
chain. It is seen that state 2 can only be entered from state 1 and vice versa on
time steps 1,3,5,... . Such a Markov chain is called periodic or cyclic with
period 2. For a discussion of such Markov chains see Feller (1968).
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EXERCISES

1. A geneis present in human populations which has two alleles A rand A, If
a group initially has 40 A;A |, 30 A, A, or A,A, and 30 A,A, individuals,
what will the equilibrium (HW) genotype frequencies be?

2. Complete the proof of Theorem 8.2; that

Pr(Xo=s.X,=5;,....X,=5,)= P O)pjos(1) - p;, (1)

for n> 1. (Hint: Use mathematical induction.)
3. Establish the Chapman-Kolmogorov equations

M
(m+n) __
k= Zl P}:'")PE:)-
i=

(Hint: Use matrix multiplication.)
4. Show that the matrix with elements given by (8.13) is stochastic.

5. An)( stochastic matrix defines a temporally homogeneous Markov chain.
Which of the following matrices are stochastic?

(@) [1/4 3/4] ®) [i/2 112 6
1 0 12 1/4 0
1 0 Q

©@ 1 o o
/3 13 0 13
12 1/4 18 1/8
12 0 14 14

6. For the Markov chain for random mating with no mutation, the transition
matrix when N =1 is

1 0 0
P=|1/4 112 1/4
0 0 1

Il Xo has the distribution p(0)=[0 3 1], find the probability
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distributions of X ,, X,, X ; and X ,. Plot these distributions and observe
the phenomenon of random drift.

. The matrix I of absorption probabilities for the simple random walk with

absorbing barriers at 0 and 3 was found to be
1[4 pz]
= :
1 pq[qz P
Verify that

(a) the row sums of IT are unity ‘ _
(b) the probabilities of absorption at 0 agree with those given by (7.17).

. For the genetic Markov chain (Section 8.3) with a population of N diploid

p—

individuals, find the matrices Q and R. Verify that the matrix IT of
absorption probabilities

1—12N 12N
1—2/2N 2/2N
M=1,_%aN k2N
12N  1—12N
satisfies
(I-QII=R.

Prove that the Markov chain {X,} for random genetic drift deﬁnfzd in
Section 8.3 is a martingale. (cf. Exercise 14 of Chapter 7.) Use the optlopal
stopping theorem to deduce immediately that the probabilities of fixation

are given by (8.22). . ' .
For the simple random walk with absorbing barriers at 0 and 3, verify that

the formulas
1+g¢
1—pq’

1+p
E(T1)=1—qu,

E(T;)=

for the expected times to absorption from X, =1, X =2, respectively,
agree with those given by (7.23).

Tghe following problem is based upon one in Kemen}' an(.:l Snell (1960). In
each year of a three-year degree course, a umver.m'ty studenF has
probability p of not returning the following year, probability g of having tcT
repeat the year and probability r of passing (p + g +r = 1). Th.e states are:
dropped out (s,), graduated (s,), is a third-year gtudent (s3), is a secon(_i—
year student (s,), and is a first-year student (ss). Fl.nd the transition matrix
P and the matrices Q and R. (Note that this is a random walk with

absorbing barriers.)

G i
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12. For the Markov chain of Exercise 11, solve the equations (I — Q)® =1 to

obtain the fundamental matrix ® = (I— Q) 1.

13. For the Markov chain of Exercise 11, find a student’s chances of

graduating if he is in years 1, 2 and 3.

14. For the Markov chain of Exercise 11, find the average number of years a

first-year, second-year and third-year student will remain in university.

I5. The following example is based on an application discussed in Isaacson

16.
17.

18.

and Madsen (1976). Farms are divided into four categories: very small (s,),
very large (s,), large (s3) and small (s,). Farms grow or shrink as land is
bought or sold. It is assumed that once a farm is very small or very large it
stays as such. Small and large farms increase in size each year into the next
category with probability 4, remain the same size with probability 4 and
decrease in size to the category below with probability 4. Find the
transition matrix and the expected time for a small farm to become either
very small or very large.

Prove that P" > 0=P" " >0, k=1,2,...

The following learning model, due to Bush and Mosteller, is discussed in
Bailey (1964). In a learning experiment let s 1 be a correct response and s,
an incorrect response. The response at any trial depends only on the result
of the previous trial and the transition matrix is

;
P=[ 2N :] 0<pg<l.
9 l-—gq

Let X, be the response on trial n, n=0,1,2,...

(a) Find the stationary probability vector i

(b) Will the probability distribution of X, approach p as n— «x?
(c) Find the matrix P.

(d) Prove, using induction or otherwise, that

W_I_[q p:’+(1 —p—q)"[ P —p]
p+qlqg p p+q [ -9 qf
Hence verify your result (c).
(e) Iftheinitial response is correct so p(0) = [ 1 0], what is the probability
of a correct response on trial n?
For a simple random walk assume there are reflecting barriers at 0 and 3.
Thatis, when the particle gets to 0 or 3 it goes on the next step to states | or
2 (respectively) with probability one. Thus the transition matrix is

P

o onm o
oW O =
ol = T~ T e ]
O OO
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. : l"
(a) Without doing any calculations, is this a regular 1\_/[.arlfov chami‘)? ‘gﬁ
(b) If the answer to (a) is yes, compute the equilibrium probability

istribution . 3 -
(©) ;ll} s)t(r:,: 3 wll:at is the eventual probability that the position of the

ticle is 3?7 ' ) o

19. In trlf:ar ;vlarkov chain model of random mating with mu.tatlon' 1;:i ;
. population of size N, find P if ¢, =a, =a#0. Given an ar:nratr):.l)nna

probability distribution p(0), find p(l). and deduce that the stationary
istribution is attained in one generation. . .

20 3‘1,3;1:;0 :illl happen in the Markov chain model of random mating with

mutation if &, #0 but a, =0?

. «_t:{;
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Population growth I birth and
death processes

9.1 INTRODUCTION

It is clearly desirable that governments and some businesses be able to predict
future human population numbers. Not only are the total numbers of male
and female individuals of interest but also the numbers in certain categories
such as age groups. The subject which deals with population numbers and
movements is called demography.

Some of the data of concern to human demographers is obtained from our
filling out census forms. The type of data is exemplified by that in Tables 9.1
and 9.2. In Table 9.1 is given the total population of Australia at various times
since 1881 and Table 9.2 contains some data on births and deaths and their
rates. Notice the drastic fall in the birth rate in the last few decades compared
with an almost steady death rate.

Table 9.1
Time Population of
Australia (thousands)*
3 April 1881 2250.2
5 April 1891 31778
31 March 1901 3773.8
3 April 1911 4455.0
4 April 1921 5435.7
30 June 1933 6629.8
30 June 1947 75794
30 June 1954 8986.5
30 June 1961 10548.3
30 June 1966 11599.5
30 June 1971 12937.2
30 June 1979 144172
30 June 1981 149233

*Obtained from Cameron (1982) and Australian
Bureau of Statistics.



