Last name, first name, ID number :

1. Let X and Y be two random variables and $\rho(X, Y)$ be the dimensionless correlation coefficient between X and Y. Show that $-1 \leq \rho(X, Y) \leq 1$. <u>Solution</u>: Let's define $\mu_X = E(X)$, $\mu_Y = E(Y)$, $\sigma_X^2 = Var(X)$, $\sigma_Y^2 = Var(Y)$, $U = \frac{X - \mu_X}{\sigma_X} \sim \mathcal{N}(0, 1)$, $V = \frac{Y - \mu_Y}{\sigma_Y} \sim \mathcal{N}(0, 1)$ and $W = (U - \frac{E(UV)}{E(V^2)}V)^2$. Since W is a positive random variable, its expected value is positive. Calculating, we find $E(W) = E(U^2) - \frac{E(UV)^2}{E(V^2)} \geq 0$ so $E(U^2)E(V^2) \geq E(UV)^2$. Notice that $Var(U) = E(U^2) - E(U)^2 = E(U^2) = 1$. Similarly $E(V^2) = 1$. Thus $1 \geq E(UV)^2$ so $-1 \leq E(UV) \leq 1$. Moreover $E(UV) = Cov(U, V) = \frac{1}{\sigma_X \sigma_Y} Cov(X, Y) = \rho(X, Y)$. Therefore $-1 \leq \rho(X, Y) \leq 1$.

- 2. Let X and Y be two random variables.
 - (a) Show that $E(XY)^2 \leq E(X^2)E(Y^2)$. <u>Solution</u>: Set $U = (X - \frac{E(XY)}{E(Y^2)}Y)^2$. Since X is a positive random variable, its expected value is positive. Calculating, we find $E(U) = E(X^2) - \frac{E(XY)^2}{E(Y^2)} \geq 0$. Therefore $E(XY)^2 \leq E(X^2)E(Y^2)$.
 - (b) Show that $\operatorname{cov}(X, Y)^2 \leq \operatorname{Var}(X)\operatorname{Var}(Y)$. <u>Solution</u>: Let's define $\mu_X = \operatorname{E}(X), \, \mu_Y = \operatorname{E}(Y), \, U = X - \mu_X, \, V = Y - \mu_Y \text{ and } W = (U - \frac{\operatorname{E}(UV)}{\operatorname{E}(V^2)}V)^2$. Since W is a positive random variable, its expected value is positive. Calculating, we find $\operatorname{E}(W) = \operatorname{E}(U^2) - \frac{\operatorname{E}(UV)^2}{\operatorname{E}(V^2)} \geq 0$ so $\operatorname{E}(U^2)\operatorname{E}(V^2) \geq \operatorname{E}(UV)^2$. Notice that $\operatorname{Var}(X)\operatorname{Var}(Y) = \operatorname{E}(U^2)\operatorname{E}(V^2)$ and $\operatorname{cov}(X, Y)^2 = \operatorname{E}(UV)^2$. Therefore $\operatorname{cov}(X, Y)^2 \leq \operatorname{Var}(X)\operatorname{Var}(Y)$.
- 3. One deterministic model of population growth with limited resources is the logistic model: if x_t is the population at year $t \in \mathbb{N}$, r_0 is the population per capita growth rate when resources are unlimited and k is the carrying capacity, that-is-to-say the largest population size that the environment can maintain, yien the model is

$$x_{t+1} = x_t \Big(1 + r_0 (1 - \frac{x_t}{k}) \Big).$$

Suppose we want to change it to a stochastic model for X_t , the random variable giving the population at time t.

- How might we introduce random yearly variation in the per capita growth rate? Does it represent environmental or demographic stochasticity? <u>Solution</u>: We can replace r_0 by $R_0 \sim (r_0, \sigma^2)$ where we should decide/make an assumption about what the
 - variance σ^2 is. It represents demographic stochasticity.
- Suppose droughts every 5 years (on average) reduce capacity in half. How would we introduce this into the model? Does it represent environmental or demographic stochasticity? Solution: We can replace k by a discrete random variable K whose p.f. is

$$P(K = k) = 0.8, \ P(K = k/2) = 0.2.$$

It represents environmental stochasticity.

4. Find the solution of the difference equation $u_{n+2} - 3u_{n+1} + 2u_n = 0$ subject to boundary conditions $u_0 = 0$ and $u_5 = 62$.

<u>Solution</u>: let's look for a solution in the form $u_n = \lambda^n$. Plugging in the equation, we get

$$\lambda^{n+2} - 3\lambda^{n+1} + 2\lambda^n = 0$$

that is

$$\lambda^n (\lambda^2 - 3\lambda + 2) = 0.$$

We have either $\lambda = 0$ which does not satisfy the boundary conditions, or $\lambda^2 - 3\lambda + 2 = 0$ which leads to $\lambda = 1$ or $\lambda = 2$. The general solution of the difference equation is $u_n = a + b2^n$. We want $u_0 = a + b = 0$ so a = -b and $u_n = b(2^n - 1)$. Also, we want $u_5 = b(21 - 1) = 62$ so b = 2. Therefore, the solution is $u_n = -2 + 2^{n+1}$.

5. Suppose a random walk is defined by

$$X_n = X_{n-1} + Z_n, \ n = 1, \ 2, \ 3, \dots$$

where the random variables Z_n are independent and identically distributed with $P(Z_n = 1) = p$, $P(Z_n = 0) = r$, $P(Z_n = -1) = q$ and p + r + p = 1. Assume the values of the random variables X_n are 0, 1, ..., N. Let u_n the probability of reaching N before 0 when $X_0 = n$.

(a) Set up a difference equation for u_n with the appropriate boundary conditions at 0 and N. Solution: Define the event A_n , R, L and S by

> A_n = reaching N before 0 when $X_0 = n$, R = move right on 1st move, L = move left on 1st move, S = stay put on 1st move.

Thus we have

$$u_n = P(A_n) = P(A_n|R)P(R) + P(A_n|L)P(L) + P(A_n|S)P(S) = u_{n+1}p + u_{n-1}q + u_nr.$$

Hence

$$(1-r)u_n = u_{n+1}p + u_{n-1}q$$

that is

$$u_n = u_{n+1}p' + u_{n-1}q'$$

where $p' = \frac{p}{1-r}$ and $q' = \frac{q}{1-r}$. Note that p' + q' = 1.

(b) Show that the expressions for the probabilities are the same as those for the simple random walk described in section 7.3.

<u>Solution</u>: The difference equation for u_n is the same as the recurrence equation (7.8) p 320 in the textbook, with the same boundary conditions $u_0 = 0$ and $u_N = 1$. Therefore, the solution is the same: if $p \neq q$ (that is $p' \neq q'$) then

$$u_n = \frac{1 - (p'/q')^n}{1 - (p'/q')^N} = \frac{1 - (p/q)^n}{1 - (p/q)^N}.$$

6. Find the general solution of the differential equation $y'(t) = 2y(t) + e^{4t}$. <u>Solution</u>: Using the method of the integrating factor, we find $y(t) = e^{2t} \int e^{-2t} e^{4t} dt = e^{2t} \left(\frac{e^{2t}}{2} + C\right) = \frac{e^{4t}}{2} + Ce^{2t}$. Sample exam 2 Wilson

7. Assume N(t) is a population at time t. Assume there are no births and

 $P(1 \text{ death in } (t, t+h)|N(t) = n) = n\delta h + o(h)$

P(more than 1 death in (t, t+h)|N(t) = n) = o(h)

(a) Determine P(0 death in (t, t+h)|N(t) = n). Solution: $P(0 \text{ death in } (t, t+h)|N(t) = n) = 1 - n\delta h + o(h)$. (b) Find the Kolmogorov differential equation for $p_n(t) = P(N(t) = n)$. Solution: Note that $p_n(t) = P(N(t) = n)$ for $n \in \{n_0, n_0 - 1, \dots, 0\}$. We have

$$p_n(t+h) = p_{n+1}(t)\big((n+1)\delta h + o(h)\big) + p_n(t)\big(1 - n\delta h + o(h)\big) + o(h)$$

hence

$$\frac{p_n(t+h) - p_n(t)}{h} = p_{n+1}(t)(n+1)\delta - p_n(t)n\delta + \frac{o(h)}{h}.$$

hence

$$p'_{n}(t) = (n+1)\delta p_{n+1}(t) - n\delta p_{n}(t).$$

(c) Without proof, what should the p.d.f. of the interevent time be, when assuming that $N(0) = n_0$? <u>Solution</u>: It should be the p.d.f. of an exponential distribution with rate constantly decreasing as the population decreases, that is $X_1 \sim n_0 \delta e^{-n_0 \delta t}$, $X_2 \sim (n_0 - 1) \delta e^{-(n_0 - 1)\delta t}$, ect...