Last name, first name, ID number :

- 1. Consider a single observation Y from an exponential distribution with mean θ where θ is unknown.
 - (a) Find the probability density function of the random variable $U = \frac{Y}{\theta}$. Solution: Using the mgf or the cdf or a substitution, we find that $U \sim \mathcal{E}(1)$. Its pdf is the function

$$f(u) = \begin{cases} e^{-u}, \ u > 0\\ 0, \ u \le 0. \end{cases}$$

- (b) Find a real number a such that P(U < a) = 0.05. Solution: the real number a is solution of $\int_0^a e^{-u} du = 0.05$. Integrating and solving for a, we find $a = -\ln(0.95) \approx 0.051$.
- (c) Find a real number b such that P(U > b) = 0.05. Solution: the real number b is solution of $\int_b^\infty e^{-u} du = 0.05$. Integrating and solving for b, we find $b = -\ln(0.05) \approx 2.99$.
- (d) Use the results of the previous questions to find an exact 90 % confidence interval for the parameter θ . Solution: From (b) and (c), we have

$$P\left(-\frac{Y}{\ln(0.05)} \le \theta \le -\frac{Y}{\ln(0.95)}\right) = P\left(-\ln(0.95) \le U \le -\ln(0.05)\right) = 0.9.$$

Thus $\left(-\frac{Y}{\ln(0.05)}, -\frac{Y}{\ln(0.95)}\right)$ is an exact 90 % confidence interval for the parameter θ .

2. Suppose that X_1, \ldots, X_n form a random sample from the exponential distribution with parameter θ . Suppose that we want to test the hypotheses:

$$H_0: \theta \ge \theta_0,$$

$$H_1: \mu < \theta_0.$$

Let $X = \sum_{i=1}^{n} X_i$ and let δ_c be the test that rejects H_0 if $X \ge c$.

(a) Show that $\pi(\theta|\delta_c)$ is a decreasing function of θ . <u>Solution</u>: Since X_1, \ldots, X_n form a random sample from the exponential distribution with parameter θ , the random variable $U = \theta X \sim \Gamma(n, 1)$. Thus, $\pi(\theta|\delta_c) = P(X \ge c) = P(U \ge \theta c) = 1 - G(\theta c)$ where G i the cdf of U. Since G is increasing and c must be positive (setting c equal to a negative value would led to always rejecting H_0), we conclude that $\pi(\theta|\delta_c)$ is a decreasing function of θ .

(b) Find c in order to make δ_c have the size α_0 . Solution: According to the result of the previous question, we have

$$\alpha(\delta_c) = \sup_{\theta \ge \theta_0} \pi(\theta | \delta_c) = \sup_{\theta \ge \theta_0} 1 - G(\theta c) = 1 - G(\theta_0 c).$$

Thus, for δ_c to have the size α_0 , we need $1 - G(\theta_0 c) = \alpha_0$, that is $c = \frac{G^{-1}(1-\alpha_0)}{\theta_0}$.

- (c) Let $\theta_0 = 2$, n = 1 and $\alpha_0 = 0.1$. Find the precise form of the test δ_c and sketch its power function. <u>Solution</u>: Since the cdf of $\Gamma(1,1)$ is $G(u) = 1 - e^{-u}$, we obtain the equation $e^{-2c} = 0.1$ whose solution is $c = -\frac{\ln(0.1)}{2} \approx 1.15$. The test procedure is : rejects H_0 if $X_1 \ge -\frac{\ln(0.1)}{2}$.
- 3. Suppose that X_1, \ldots, X_{25} form a random sample from the normal distribution with mean μ and variance 1. Let μ_0 be a real number and assume that we want to test the hypotheses:

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

Consider a test procedure such that H_0 is to be rejected if $|X_n - \mu_0| \ge c$. Determine the value of c such that the size of the test will be 0.05.

<u>Solution</u>:Denote δ the test procedure described in the statement. We want

$$\alpha(\delta) = P(|\bar{X}_{25} - \mu| \ge c|\mu = \mu_0) = P(|Z| \ge 5c) = 0.05.$$

where $Z \sim \mathcal{N}(0, 1)$. Thus, we must have $c = \frac{\Phi^{-1}(0.975)}{5} \approx 0.392$.

4. Suppose that a random sample X_1, \ldots, X_8 from the normal distribution with unknown mean μ and unknown variance σ^2 is observed and it is desired to test the following hypothese

$$H_0: \mu = 0,$$

$$H_1: \mu \neq 0,$$

Suppose that the sample data are such that $\sum_{i=1}^{8} X_i = -11.2$ and $\sum_{i=1}^{8} X_i^2 = 43.7$. If a symmetric *t*-test is performed at the level of significance 0.1 so that each tail of the critical region has probability 0.05, should the hypothesis H_0 be rejected or not?

Solution; Here, we must use the test procedure :

Reject
$$H_0$$
 if $|U| \ge T_7^{-1}(0.95)$

where U is the test-statistic defined in Eq. (9.5.2) p. 576 of the text book. Calculating, we find $|U| \approx 1.98$ and $T_7^{-1}(0.95) \approx 1.895$ so H_0 should be rejected.

5. Suppose that X_1, \ldots, X_n form a random sample from the Poisson distribution with unknown mean λ . Let λ_0 and λ_1 be specified values such that $0 < \lambda_0 < \lambda_1$ and suppose that it is desired to test the following hypothese.

$$H_0: \lambda = \lambda_0,$$

$$H_1: \lambda = \lambda_1.$$

- (a) Show that the value of $\alpha(\delta) + \beta(\delta)$ is minimized by a test procedure which rejects H_0 when $\bar{X}_n > c$. <u>Solution</u>: By theorem 9.2.1 p 552, we know that $\alpha(\delta) + \beta(\delta)$ is minimized by a test procedure which rejects H_0 when the likelihood ratio exceeds 1. Calculating, we find that the likelihood ratio equals $e^{(\lambda_0 - \lambda_1)n} \left(\frac{\lambda_1}{\lambda_0}\right)^{n\bar{X}_n}$. Since, $0 < \lambda_0 < \lambda_1$, it can be shown that the likelihood ratio exceeds 1 if and only if $\bar{X}_n \ge \frac{\lambda_1 - \lambda_0}{\ln(\lambda_1) - \ln(\lambda_0)}$.
- (b) Find the value of c.

<u>Solution</u>: According to the previous question, $c = \frac{\lambda_1 - \lambda_0}{\ln(\lambda_1) - \ln(\lambda_0)}$.

(c) For $\lambda_0 = \frac{1}{4}$, $\lambda_1 = \frac{1}{2}$ and n = 20, determine the minimum value of $\alpha(\delta) + \beta(\delta)$ that can be attained. Solution: we have $c = \frac{1/4}{\ln(1/2) - \ln(1/4)} \approx 0.361$. Thus,

$$\begin{aligned} \alpha(\delta) + \beta(\delta) &\approx P(\bar{X}_{20} > 0.361 | \lambda = \frac{1}{4}) + P(\bar{X}_{20} < 0.361 | \lambda = \frac{1}{2}) \\ &= P(Y_1 > 7.213 | Y_1 \sim \text{Poisson}(1/4)) + P(Y_2 < 7.213 | Y_2 \sim \text{Poisson}(1/2)) \\ &\approx 0.3536. \end{aligned}$$