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Abstract Protein Misfolding Cyclic Amplification is a procedure used to acceler-
ate the prion-replication process involved during the incubation period of trans-
missible spongiform encephalopathies. This technique could be used to design an
efficient diagnosis test detecting the abnormally-shaped protein responsible of the
decease before the affected person is at an advanced stage of the illness. In this
paper, we investigate the open problem to determine what is the optimal strategy
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to produce maximum replication in a fixed time. Primarily, we expand on prior
attempt to answer this question in general, and provide results under some specific
assumptions.
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tion · Optimal Control · Singular Extremals
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1 Introduction

Transmissible spongiform encephalopathies (TSEs) are a group of progressive dis-
eases affecting the brains and nervous systems of many animals, including humans.
The disorders cause impairment of brain function, including memory changes, per-
sonality changes and problems with movement that worsen over time. Some exam-
ples include scrapie in sheep, bovine spongiform encephalopathies in cows (“mad
cow disease”), and Creutzfeld-Jakob disease in humans [13]. Transmission of TSEs
can occur when healthy animals consume tainted tissues from others with the dis-
ease. The mad cow disease epidemic occurred because cattles were being fed the
processed remains of other cattle, a practice now banned in many countries. TSEs
are characterized by their long incubation periods, lack of immune response, and
invisibility to detection as viruses [33]. It is postulated that TSEs are invisible to
detection as viruses because, in fact, they are not caused by viruses, but instead
by abnormally shaped proteins – the so called, prion protein [12]. This hypothesis
explains many of the features of the infectious agents of TSEs, except for their
ability to replicate.

Prions do not contain DNA or RNA, which are the commonly accepted basis
for replication. Ongoing research seeks to explain the replication mechanism for
prions. The leading theory is nucleated polymerization, in which healthy prions are
converted to infectious ones [24]. In this paper, we use standard notation for the
normal prion PrPc (prion protein cellular) and the abnormal prion PrPSc (prion
protein scrapie). The biological processes associated with nucleated polymerization
theory and the replication of PrPSc polymers can be summarized as: lengthening
(by addition of PrPc monomers); splitting (into two smaller polymer lengths);
degradation (by metabolic processes). The polymers of PrPSc can replicate by
attaching units of PrPc in a string-like fashion to its ends (i.e. lengthening). After
a PrPc monomer attaches to the PrPSc polymer it is converted to the infectious
form. When the PrPSc polymer is long enough to wrap into a helical shape, it
forms stabilizing bonds that constitute the polymer strings. These strings can
grow to lengths of thousands of monomer units. The PrPSc polymers can also split
into two polymers of smaller lengths, each of which are then capable of further
lengthening. If after splitting, a smaller polymer is below the threshold to maintain
the stabilizing bonds, it degrades immediately into the normal PrPc monomers. It
is the collection of long PrPSc polymers which effectively interrupt normal nervous
system processes.

Since incubation takes place over very long period of time, detecting the pro-
tein is often not possible until the affected person is at an advanced stage of a
related disease. Protein Misfolding cyclic amplification is a technique to simulate
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an accelerated replication process for prions in a laboratory environment [35]. This
amplification process for instance permitted detection of abnormal prions in blood
sample of affected hamsters [11]. The idea is to create a cyclic scheme that mimic
polymerase chain reaction by alternating incubation phases to allow lengthening
of the abnormal prion with sonication phases to break the polymers into smaller
ones. In [34], the incubation phase is set to be more than 30 times the duration of
the sonication phase. In control theory we refer to such strategy as bang-bang, the
sonication pulse alternates between a minimum value (corresponding to no sonica-
tion) and a maximum value. There is an extensive number of papers published on
the subject including[18,20,30], in which the authors discuss strategies to improve
PCMA. Those include more sophisticated equipment, the use of different tissues
for detection, variation of concentration of PrPc in the substitute, introduction of
Teflon beads to increase the conversion of PrPc into PrPSc , and increasing the
number of cycles. In all those paper the procedure of the PCMA is always identical
to the bang-bang strategy described above. However, bang-bang approaches are
not necessarily the most efficient ones in particular to be applied to human blood
samples and a more refine strategy is necessary. It is well known that the so-called
singular arcs play a major role in optimal synthesis [5]. For instance, it has been
shown that optimal control strategies contain singular arcs to provide, in some
situations, viable options for chemoterapy treatments, see for instance [25–27].

It is an open problem to determine what is the optimal strategy to produce
accelerate replication in a given time, and in this paper we expand on the first
attempt made in [14] to answer this question in general. In particular, techniques
form geometric control are used to study the singular flow in dimensions greater
than two.

2 Statement of the problem as a Mayer Problem

In [29], the authors introduce a mathematical model of nucleated polymerization
that is now the most widely used. In this paper, we consider a finite version of
Masel’s model that contains an infinite number of coupled ordinary differential
equations. Note that there also exists a continuous version of this model, see [21].
These models capture the competition between the two processes of nucleated
polymerization: lengthening and splitting. An in-depth study of the correlation
between those two phenomena based on these models can be found in [19]. Here,
we focus on a mathematical model to describe the protein misfolded cyclic am-
plification (PMCA) technique that was introduced in [19]. The model reflects the
cyclic process that includes incubation phases, corresponding to the lengthening of
the polymers, with sonication phases corresponding to the splitting of the PrPSc .
The two major assumptions for the model used here are first that there is an infi-
nite population of PrPc throughout the experiment to induce the polymerization
process and second that the growth and fragmentation constants of the polymers
are not impacted by the sonication.

A detailed introduction to the model can be found in [14,19], we therefore
restrict ourselves here to a brief introduction. The n-compartment approximation
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of the continuous version of this model is given by

ẋi(t) + r(u(t))(τixi(t)− τi−1xi−1(t)) = u(t)

2
n∑

j=i+1

βjκi,jxj(t)− βixi(t)

 (1)

for 1 ≤ i ≤ n, where xi(t) represents the density of polymer of size i at a given
time t, and the measurable bounded function u(.) called the control represents the
sonication intensity applied throughout the entire process. Practical implementa-
tion forces the control to be bounded: u(t) ∈ [umin, umax] with umax ≥ umin > 0,
and the function r(.) is decreasing to reflect the negative effect of ultrasound on
the polymerization. The constants τi, βi and κi represents respectively the growth
rate, the global fragmentation and the fragmentation kernel of polymers of size i.

Equation (1) can be seen as a (first order) size discretization of the partial
differential equation

∂tf(t, y) + r(u(t))∂y
(
τ(y)f(t, y)

)
= u(t)

(
2

∫ ∞
y

β(z)κ(y, z)f(t, z) dz − β(y)f(t, y)

)
,

(2)
where y > 0 represents the length of the polymers. Most of our study will be
made on the n-compartment approximation, but we will briefly come back to the
continuous model (2) at the end of the paper.

System (1) can be rewritten as a bi-input control system,

ẋ(t) =

(
u(t)F + v(t)G

)
x(t), xi(0) > 0 (3)

where v(t) = r(u(t)), and F,G represent respectively the fragmentation and growth
matrices:

F :=


0
−β2 (2κijβj)i<j

. . .

0
−βn

 , G :=



−τ1
τ1 −τ2 0

. . .
. . .

0 τn−2 −τn−1

τn−1 0


, (4)

with the following assumptions:

τi > 0, βi+1 > 0 for all i ∈ [1, n− 1], (5)

and

j−1∑
i=1

κij = 1,

j−1∑
i=1

iκij =
j

2
, (6)

which ensure that the breakage of a polymer produces two smaller ones with a
half mean size.

The problem is to maximize the final density of PrPSc represented by

n∑
i=1

ixi(T )
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where T is the fixed final time.
It is relevant, from the biological point of view, to suppose that the function

r is a decreasing convex positive function belonging to C2([umin, umax]). Thus, we
assume that, for all u ∈ [umin, umax],

r′(u) > 0, (7)

r′′(u) > 0, (8)

r(u)− ur′(u) > 0. (9)

The pair (u(t), v(t)) belongs by definition to the graph of the function r, denoted
Ω and defined by

Ω = {(u, r(u)), umin ≤ u ≤ umax}.

This set is not convex in R2, since r is a strictly convex function. However, to
guarantee the existence of an optimal control, we must consider a convex control
set, see [28]. We consequently relax the problem by assuming that (u(t), v(t))
belongs to the convex hull of Ω, denoted H(Ω). It can then be proved, see [14],
that, for almost every t ∈ [0, T ], the optimal control (u∗(t), v∗(t)) belongs to the
line l that links (umin, r(umin)) to (umax, r(umax)) in the uv−plane. Therefore, in
the sequel we assume v = ξ + uθ > 0, where the negative slope θ and the positive
v-intercept ξ of the line l are given by

θ =
r(umax)− r(umin)

umax − umin
< 0 (10)

ξ = r(umax)− umax
r(umax)− r(umin)

umax − umin
> 0

Using a time reparametrization, our system can be written as a bi-linear control
system

ẋ(t) = Ax(t) + u(t)Bx(t) (11)

where A = G,B = F + θG, xi(0) > 0. To summarize, our goal is to solve the
following problem

ẋ(t) = Gx(t) + u(t)(F + θG)x(t), xi(0) = x0
i > 0 (12)

max
u∈U

n∑
i=1

ixi(T ), (13)

where U is the set of measurable functions that satisfy u(t) ∈ [umin, umax] for
almost every t. This is a standard Mayer problem in optimal control.

Remark 1 Using that with our reparametrization we have 1 + uθ > 0, we conlude
that system (11) is of the form ẋ(t) = Mu(t)x(t), where Mu = G+u(F + θG), with
negative diagonal entries and non negative off diagonal entries. As a consequence
the first orthant of the state space is positively invariant. In particular, if xi(0) > 0
then xi(t) > 0 for all t ∈ [0, T ].

The set of points where the drift Gx and the control vector field (F + θG)x are
collinear plays an important role to analyze the dynamics of the system. The
following lemma states that for our problem this set is empty on the first orthant.
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Lemma 1 The vector fields Gx and (F + θG)x are linearly independent for every x

such that xi > 0.

Proof If Gx and (F + θG)x are collinear, there exists λ ∈ R\{0} such that λGx =
(F + θG)x which is equivalent to (λ− θ)Gx = Fx. Renaming λ− θ = γ, we search
for the collinear set of F and G. Given the structure of the matrices F and G and
the constraints on the coefficients we conclude that if Fx and Gx are collinear then
0 =

∑n
i=2 βixi. Since xi > 0, βi > 0 for all i, we reach a contradiction.

Notice that since umin > 0, the study of the uncontrolled system (u = 0) is
irrelevant.

The current experimental procedure for PMCA consist of alternate phases of
30 min. incubation (corresponding to no sonication, u = umin) and 40 sec. pulse
of sonication set (constant pulse at 60% of max performance, u = 0.6 ∗ umax), see
[34]. This procedure does not take into account that there exists a special value
of the control that provides the most efficient increase in the number of polymers
nor is based on an analytic analysis to determine the best duration for which the
various values of the control should be applied. Using tools of geometric control,
we can prove in particular that singular arcs provides optimal strategies with an
increased performance. We recall here some results from [14] and expand on their
analysis.

As in [14], for the relaxed optimal control problem, to a fixed pair of control
(u, v) ∈ H(Ω) we associate the Perron eigenvalue (the single dominant eigenvalue)
λp(u, v) of the matrix uF+vG. Its existence is guaranteed by the Perron-Frobenius
theorem [36] (the matrix is irreducible and has non-negative extra-diagonal values).
View as a function λp(u) of the control defined on a compact set, there exists a
maximum value λ̄p corresponding to a control that we denote (ū, v̄), i.e. λ̄p =
λ(ū, v̄). In [14], it is proved that (ū, v̄) ∈ Σ. Under our reparametrization, we have
by construction that v̄ = 1 + ūθ. To summarize, we associate to problem (12) the
control ū defined as producing the maximum of the function:

λ : [umin, umax]→ R+\{0}
u→ λu.

where λu is the Perron eigenvalue of the matrix Mu = G+ u(F + θG) introduced
in Remark 1.

For every u ∈ [umin, umax], let’s denote ξu (seen as a column vector) and φu
(seen as a row vector) the corresponding right and left eigenvectors such that

Muξu = λuξu (14)

φuMu = λuφu (15)

normalized by the constraints ||ξu||1 :=
∑n
i=1 |ξi| = 1 and φuξu = 1.

A remarkable fact shown in the next section is that ū is a so-called singular
with corresponding singular trajectory ξū.

3 Maximum Principle

The Pontryagin Maximum Principle, see [5,32], gives necessary conditions for a
solution of a control problem to be optimal. Let u∗(.) be an optimal control for
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Fig. 1 Graph of the mapping u → λu, for τ1 = 1.10−7, τ2 = 3.10−7, β2 = 2.10−10, β3 =
3.10−10, θ = −1.10−3 over the interval [umin, umax] = [1, 800]. For this set of parameters, we
find a maximum perron eigenvalue λ̄p = 4.29787.10−8 corresponding to a control ū = 402.265.

Mayer problem (12) defined on [0, T ], and x∗(.) be the corresponding trajectory.
Then there exists an absolutely continuous row vector p∗ : [0, T ] −→ Rn\{0} such
that, for almost every t ∈ [0, T ]

ṗ∗(t) = −p∗(t)
(
G+ u(t)(F + θG)

)
. (16)

Moreover, if we introduce the Hamiltonian function

H(x, p, u) = pGx+ up(F + θG)x, (17)

the maximization condition

H(x∗(t), p∗(t), u∗(t)) = max
u∈[umin,umax]

H(x∗(t), p∗(t), u), (18)

holds for almost every time t ∈ [0, T ] and the Hamiltonian is constant. Finally, the
transversality condition implies that, up to a normalization,

p∗(T ) = (1 . . . n). (19)

Similarly to Remark 1, we deduce from (19) that p∗i (t) > 0 for all t < T , since
pi(T ) > 0. Thus, both x∗(t) and p∗(t) are strictly positive for t ∈ [0, T ]. A 3-tuple
(x(.), p(.), u(.)) solution of (11), (16), (18) and (19) is called an extremal of the
problem.

Introduce the function Φ(t) = p(t)(F + θG)x(t), then the maximization condi-
tion (18) implies the following. If u∗(.) is an optimal control, we have

u∗(t) :=


umin if Φ(t) < 0
umax if Φ(t) > 0
∈ [umin, umax] if Φ(t) = 0.
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The function Φ(.) is called the switching function and an isolated zero t of the
switching function is called a switching time. If Φ(t) = 0 on a nonempty time
interval, a further analysis must be performed to deduce the value of u∗(t) (see
below). A bang extremal defined on [t1, t2], t2 > t1, corresponds to a constant
maximum or minimum control, i.e. the sign of the switching function is constant
over the entire interval (either strictly positive or strictly negative). An extremal
is said to be singular on [t1, t2], t2 > t1, if Φ(.) identical zero on that interval. The
maximum principle implies that an optimal solution x∗(.) is the projection of a
concatenation of bang and singular extremals. The main difficulty is to analyze
the structure of the optimal control, it is well-known that very complex situation
such as the Füller Phenomenon can happen [23,38].

An important remark for our problem and direct consequence from the max-
imum principle is that along an extremal the inner product between the adjoint
and the state variable is constant.

Lemma 1 Let (x(.), p(.), u(.)) be an extremal defined on [0, T ]. We have that the quan-

tity p(t)x(t) is constant, in particular our cost
∑n
i=1 ixi(T ) is equal to p(0)x(0).

Proof By direct differentiation of p(t)x(t).

Lemma 1 asserts that the cost is completely determined at time 0 since p(T )x(T ) =
p(0)x(0). Our problem is consequently equivalent to find an extremal (x(.), p(.), u(.))
which maximizes the quantity p(0)x(0).

Next, we state some facts that will be useful to understand the optimal struc-
ture of the control, see [14] for a proof.

Lemma 2 Let (x(.), p(.), u(.)) be an extremal defined on [0, T ]. The following holds:

1. p(T )Fx(T ) = 0,

2. p(t)Gx(t) > 0 for every t ∈ [0, T ], and p(T )Gx(T ) =
∑n−1
i=1 τixi(T ).

A direct consequence from Lemma 2 is the following.

Corollary 1 The Hamiltonian H is strictly positive along an extremal (x(.), p(.), u(.)).

Proof From Lemma 2, we obtain

H(x(T ), p(T ), u(T )) = (1 + θu(T ))p(T )Gx(T ) > 0.

Since the Hamiltonian is constant along an extremal, the result follows.

The following lemma provides a general result about the structure of the optimal
arc at the end.

Lemma 3 The optimal strategy must finish by a bang arc umin.

Proof By lemma 2, we have p(T )Fx(T ) = 0, therefore the switching function at the
final time is given by Φ(T ) = θp(T )Gx(T ) which, by Lemma 2, is strictly negative.
As a consequence of the maximization condition there exists an time interval [τ, T ]
with τ < T such that u(t) = umin on that interval.
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3.1 Singular Arcs

To compute singular controls we proceed as follows. Along a singular arc, we have
Φ(t) = 0 on a nonzero time interval [t1, t2] which is equivalent to

p(t)(F + θG)x(t) = Φ(t) = 0 (20)

on that same interval. Differentiating this equation, and using [G,G] = 0, we obtain

p(t)[G,F ]x(t) = Φ̇(t) = 0, (21)

where [G,F ] = GF − FG. Differentiating (21) with respect to time, we get

p(t)[[G,F ], G]x(t) + u(t)p(t)([[G,F ], F ] + θ[[G,F ], G])x(t) = Φ̈(t) = 0 (22)

almost everywhere on [t1, t2]. Outside the surface S = {(x, p); p([[G,F ], F ] +
θ[[G,F ], G])x = 0}, the singular control is said to be of order two and is given
by

using(t) = − p(t)[[G,F ], G]x(t)

p(t)([[G,F ], F ] + θ[[G,F ], G])x(t)
. (23)

We define the switching surface by Σ = {(x, p); p(F + θG)x = p[G,F ]x = 0}. The
generalized Legendre-Clebsh condition is a second order necessary condition for
optimality in the Mayer problem [22]. We have the following.

Lemma 4 The generalized Legendre Clebsh condition ∂
∂u

d2

dt2
∂H
∂u ≤ 0 is equivalent to

∂
∂u φ̈ ≤ 0 for a single-input affine control system. It is satisfied for our problem if

p(t)([[G,F ], F ] + θ[[G,F ], G])x(t) ≤ 0 (24)

along the singular arc.

In section 2, we introduce the function λ(u) where λ(u) is the Perron eigenvalue
for our problem associated to a constant control u. Multiplying (14) on the left by
φu and using φuξu = 1, we have that λ(u) = λu = φuMuξu. By differentiating this
last equation, we can show that

λ′(u) = φu(F + θG)ξu. (25)

Since Φ(t) = p(t)(F +θG)x(t), the above equation explicits the correlation between
the critical points of the function λ(.) and the singular extremals. Indeed, by
definition ū as defined in section 2 is a critical point of λ(.): λ′(ū) = 0. Therefore,
if we consider the trajectories

x̄(t) = Rξūe
λūt, p̄(t) = Sφūe

−λūt, (26)

where R,S > 0 are two constants that satisfy RS =
∑n
i=1 ixi(T ), they are clearly

solutions of the equations (11), (16) and moreover, we have, for every t

Φ(t) = p̄(F+θG)x̄ = RSφūe
−λūt(F+θG)ξūe

λūt = RSφū(F+θG)ξū = RSλ′(ū) = 0.
(27)

Our result is summarized in the following theorem.

Theorem 1 The constant control ū providing the maximum Perron eigenvalue is a

singular control.
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We define ū the Perron-singular control and (x̄, p̄) as defined in (26) the Perron
singular extremal. It has been proved in [14] that in two dimensions, it is the only
singular control. However the singular flow is much more complicated in higher
dimension.

Remark that from (14) and φuξu = 1, the Perron-singular eigenvalue is given
by

λū = φūGξū. (28)

Proposition 1 If a Perron-singular arc belongs to the optimal solution, then we have

H = λūRS along the optimal trajectory. However, it cannot contain a Perron-singular

arc if the parameters satisfy the following constraints:

i

τi
>

1 + uminθ

λū
for all i = 1, · · · , n− 1. (29)

Proof Along the Perron-singular extremal, the Hamiltonian is given by H(x̄, p̄, ū) =
p̄Gx̄ + ūp̄(F + θG)x̄. However p̄(F + θG)x̄ is zero since it is a singular arc, there-
fore H(x̄, p̄, ū) = p̄Gx̄. Since we have p̄Mūx̄ = p̄Gx̄, equation (14) implies that
H(x̄, p̄, ū) = λūp̄x̄ = λūRS. Using the fact that p(t)x(t) is constant we have
λūRS = λūp(T )x(T ) = λū

∑n
i=1 ixi. Since we know that the last arc of an op-

timal solution corresponds to a umin control, if there is a singular-Perron arc the
Hamiltonian satisfy

λū

n∑
i=1

ixi(T ) = (1 + uminθ)
n−1∑
i=1

τixi(T ). (30)

The above equation can be written as nλūxn(T )+
∑n−1
i=1 (λūi−τi(1+uminθ))xi(T ) =

0. Since λu > 0 and xi(T ) > 0 the result is proved.

4 Conjugate Points

In this section, we give the definition of the first conjugate time and provide
algorithms of computation.

Lemma 5 The generalized Legendre Clebsh condition in Lemma 4 along the extremal

(x̄(·), p̄(·), ū) defined by (26) is

φū([[G,F ], F ] + θ[[G,F ], G])ξū ≤ 0, (31)

moreover, (31) can be reformulated as

n∑
i=2

(λi − λū)(φi(F + θG)ξū)(φū(F + θG)Xi) ≥ 0, (32)

where (Xi, φi, λi) is a basis of eigenvectors of G+ ū(F + θG) defined by

(G+ ū(F + θG))Xi = λiXi, φi(G+ ū(F + θG)) = λiφi, φiXj = δi,j .
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Proof Direct computation gives

φūG(F + θG)2ξū = φū(F + θG)2Gξū. (33)

By (33), (31) can be reduced to

φū([[G,F ], F ] + θ[[G,F ], G])ξū

=2φū(F + θG)[F,G]ξū ≤ 0. (34)

Condition (34) can also be formulated as

φū(F + θG)
(

(G+ ū(F + θG))(F + θG)− (F + θG)(G+ ū(F + θG))
)
ξū ≥ 0,

which writes

φū(F + θG)
(
G+ ū(F + θG)

)
(F + θG)ξū − λūφū(F + θG)2ξū ≥ 0. (35)

If we decompose the vector (F + θG)ξū on the basis (Xi), we get

(F + θG)ξū =
n∑
i=1

(φi(F + θG)ξū)Xi,

then (35) can be rewritten as

φū(F + θG)
(
G+ ū(F + θG)

)
(F + θG)ξū − λūφū(F + θG)2ξū

=
n∑
i=2

(λi − λū)(φi(F + θG)ξū)(φū(F + θG)Xi) ≥ 0. (36)

Remark 2 We remark here that (36) also appears in the variational analysis of the
Floquet eigenvalue around ū (see [10] for more details). If it is negative, then the
existence of periodic controls providing a growth rate greater than λū is ensured.

Based on Lemma 5 and Remark 2, we have the following theorem (see [4], note
that in our case, the Goh condition is empty.)

Theorem 2 There exists ε > 0 so that the trajectory x̄ defined by (26) is locally

optimal in L∞ topology on [0, ε].

For any t ∈ [0, T ], we define the following end-point mapping of system (12) as

E : R+ × U −→ Rn

(t, u) −→ x(t, u), (37)

where s → x(s, u) is the trajectory solution of (12), associated to the control u(.)
such that xi(0, u) = xi(0).

For every t ∈ [0, T ], denote by Qt the intrinsic second order derivative of the
end-point mapping on [0, t].

Definition 1 (The first conjugate time) Define the first conjugate time tc along
a singular extremal (x(·), p(·), using(x, p)) as the supremum of times t so that Qt
is positive definite.
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From the definition of a first conjugate time, it is clear that a singular trajectory
x(·) is locally optimal in L∞ topology on [0, tc).

Our goal in this paper is to determine the existence or not of a conjugate point
along a Perron-singular extremal. Using formula (23), we introduce Hr(x, p) =
Hr(x, p, using(x, p)). Let the vector field Hr be defined by

Hr =
(
∂Hr
∂p

,−∂Hr
∂x

)T
,

and let z(t) := (x(t), p(t)) be a trajectory of Hr defined on [0, T ], i.e., ż(t) =
Hr(z(t)), for every t ∈ [0, T ]. The differential equation on [0, T ]

δ̇z(t) = dHr(z(t))δz(t)

is called Jacobi equation along z(·), or variational system along z(·).
A Jacobi field J(t) is a nontrivial solution of the Jacobi equation along z(·). It

is said to be vertical at time t whenever dπ(z(t)).J(t) = 0, where π is the canonical
projection. In local coordinates, set J(t) := (δx(t), δp(t)), then J(t) is vertical at
the time t whenever δx(t) = 0.

Definition 2 (The first geometric conjugate time) A time tc is said to be
geometrically conjugate if there exists a Jacobi field that is vertical at times 0 and
tc.

From results in [4] and Lemma 5, we claim that the first geometric conjugate
time coincides with the first conjugate time along the Perron-singular extremal
(x̄(·), p̄(·), ū) defined by (26). The test to determine a conjugate point along the
Perron-singular extremal is detailed in [4]. We recall it briefly. Consider the Jacobi
fields solutions of (39) with initial data as a basis

(δx1(0), · · · , δxn(0), δp1(0), · · · , δpn(0))

satisfying the following conditions

〈δpi(0), p(0)〉 = 0,

〈δpi(0), (F + θG)x(0)〉+ 〈δpi(0), (F + θG)δxi(0)〉 = 0,

〈δpi(0), [G,F + θG]x(0)〉+ 〈δpi(0), [G,F + θG]δxi(0)〉 = 0,

δxi(0) ∈ R(F + θG)x(0),

where x(0) = Rξū and p(0) = Sφū. We compute the n − 2 associated Jacobi
fields. We then compute numerically the conjugate time, i.e., times for which the
following condition is satisfied

rank (δx1(t), · · · , δxn−2(t), (F + θG)x(t)) 6 n− 2. (38)

For our problem, it is a straightforward calculation (but tedious) to show that We
have

δ̇z =

(
δ̇x

δ̇p

)
= dHr

(
δx

δp

)
=

(
∆1 e2λūt∆2

−e−2λūt∆3 −∆4

)(
δx

δp

)
, (39)
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where

∆1 = (G+ ū(F + θG))− (F + θG)ξūφū([[G,F ], G] + ū[[G,F ], F + θG])

φū[[G,F ], F + θG]ξū
(40)

− ([[G,F ], G] + ū[[G,F ], F + θG])ξūφū(F + θG)

φū[[G,F ], F + θG]ξū
,

∆2 = − (F + θG)ξūξ
T
ū ([[G,F ], G] + ū[[G,F ], F + θG])T

φū[[G,F ], F + θG]ξū
(41)

− ([[G,F ], G] + ū[[G,F ], F + θG])ξūξ
T
ū (F + θG)T

φū[[G,F ], F + θG]ξū
,

∆3 = − (F + θG)TφTūφū([[G,F ], G] + ū[[G,F ], F + θG])

φū[[G,F ], F + θG]ξū
(42)

− ([[G,F ], G] + ū[[G,F ], F + θG])TφTūφū(F + θG)

φū[[G,F ], F + θG]ξū
,

∆4 = ∆T1 . (43)

Using the change of variables δ̃z = (δ̃x, δ̃p) := (e−λūtδx, eλūtδp), we obtain

˙̃δz =

(
˙̃δx
˙̃δp

)
=

(
−λūI +∆1 ∆2

−∆3 λūI −∆4

)(
δ̃x

δ̃p

)
. (44)

Note that numerical softwares such as Hampath are now used to determine the
existence of conjugate points. Hampath is precisely based on an indirect method
and the algorithm described above with the variational equation [8,15].

5 Two dimensional Case

The two dimensional case corresponds to n = 2, and the optimal control problem
is 

ẋ(t) = Gx(t) + u(t)
(
F + θG

)
x(t),

max
u∈U

x1(T ) + 2x2(T ),

x1(0) > 0, x2(0) > 0

(45)

where U is the set of measurable functions that satisfy u(t) ∈ [umin, umax] almost
everywhere. In this case, the matrices F and G are given by

F =

[
0 2β
0 −β

]
, G =

[
−τ 0
τ 0

]
(46)

with β > 0, τ > 0. In [14], the authors provide an optimal synthesis, and we
summarize their results here. In dimension two, it can be shown that the only
singular control is the one determined as the critical point of the application λ

defined in section 2:

λ : [umin, umax]→ R+\{0}
u→ λu.
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In other words, a control ū is singular if and only if it maximizes the Perron-
eigenvalue of the matrix G + u(F + θG) over the set of u ∈ [umin, umax]. Such
control ū is constant and its expression can be computed explicitly in terms of the
parameters τ and β. It follows that a singular arc belongs to the line defined in the
x1, x2-plane by the right Perron eigenvector ξ̄ associated to λū. These observations
lead to the optimal synthesis of the problem depicted in Figure 2. In [14], it is
proved that for a final time T sufficiently large, the unique optimal control u∗ is
piecewise constant of the form ubangusingumin. More precisely, we have that the
positive quadrant of the x1, x2-plane is partitioned into two regions by the line l
generated by ξ̄. If the initial condition x(0) belongs to the region above the line the
optimal control starts with a sonication impulse umax until the trajectory reaches
the line l. If x(0) is in the region below the line, the optimal process start with an
incubation period associated to a control umin until the trajectory reaches the line
l. Once the trajectory is such that (x1(t), x2(t)) is proportional to ξ̄ the control
switch to the singular control ū and stay on this arc as long as possible. The value
ū maximizing the Perron eigenvalue guarantees an exponential growth of maximal
rate λū of the quantity x1 + 2x2 which is to be maximized. Such a stategy is said
to exhibit the so-called turnpike properties, see [37] for instance. By Lemma 3, the
last arc must be an incubation period corresponding to a control umin to meet the
transversality condition. Notice that the duration of the last arc is function of the
parameters τ and β and is fixed for all optimal solutions.

On Figure 2, we represent an example of an optimal solution (in blue) for a
given set of parameters. The optimal solution is compared to the one following
a PMCA procedure. Table 1 displays the performance comparison for the set
of parameters used in Figure 2. A spectacular improvement of the order of a 106

magnitude can be observed between the optimal solution and the experimental one
over a 48 hours duration period. In 48 hours, the experimental trajectory yields
J(T ) = 2.824085876741727e + 025. In only 39.7068 hours, the optimal trajectory
achieves the same J value, and in 48 hours the optimal trajectory gives J(T ) =
9.076925755681900e+ 031.

Control regime J(T )

u∗ 9.0769 · 1031

uexp 2.8241 · 1025

umin 6.2635 · 1023

umax 4.3950 · 108

Table 1 The final costs for the two-dimensional example trajectories shown in Figure 2.
Also, for comparison, the final costs for trajectories using the same parameters but with the
control frozen to umin and umax are shown. For this set of parameters, the optimal control
provides over a 106 magnitude improvement of the final cost when compared to the traditional
experimental setting.
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Fig. 2 A two-dimensional example illustrating several properties of the optimal synthesis, for
a specific set of parameters (θ = −0.1, τ = 10−3, β = 10−3, T = 48 hours, [umin, umax] =
[1, 8]). The plot on the left first shows the partition of the state space by the right-eigenvector
ξ̄ in the x1-x2 plane. The area above ξ̄ corresponds to initial points x(0) such that the associ-
ated optimal control is of the form umax-using-umin. Similarly, the area below corresponds to
points x(0) such that the associated optimal control is of the form umin-using-umin. The top
three plots are actually the same plot viewed at different zoom levels. A complete optimal tra-
jectory is displayed in blue from an arbitrary initial point x(0) = (0.9133 ·10−6, 0.6323 ·10−6).
It is defined on the time interval [0, 48] hours and corresponds to the control u∗(t) =
{8 : 0 ≤ t ≤ 83.3 sec, 2.74 : 83.3 sec < t ≤ 47.93 hrs, 1 : 47.93 hrs < t ≤ 48 hrs}. For com-
parison, in red we display the experimental trajectory defined over the same time interval,
which corresponds to a umin control with 94 umax pulses. The duration of the umax pulses
are 45 seconds, and the umin portions are 30 minutes each. The bottom plot shows the corre-
sponding controls over time.

6 The 3D case

In dimension n = 3, the optimal control system can be written under the form:{
ẋ(t) = Gx(t) + u(t)(F + θG)x(t), xi(0) > 0
max
u∈U

x1(T ) + 2x2(T ) + 3x3(T )

where θ < 0, and G and F are the constant matrices

G =

−τ1 0 0
τ1 −τ2 0
0 τ2 0

 , F =

 0 2β2 β3

0 −β2 β3

0 0 −β3


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τi > 0, βi > 0. We have

Mu = G+ u(F + θG) =

 a 2d c

−a −d− b c

0 b −c

 , (47)

where a = −τ1(1 + uθ), b = τ2(1 + uθ), c = uβ3 and d = uβ2.
We define α = a − b − c − d and γ = ab + ac − ad − cd. Notice that α < 0. We

have that the characteristic polynomial of Mu is given by

p(λ) = λ3 − αλ2 − γλ+ ac(b+ d). (48)

There exists at least one positive real value since the coefficient in front of λ3

is positive and the y−intercept is negative. By differentiating the characteristic

polynomial, we see the critical points are λ = 2α
6 ±
√

4α2−12γ
6 which is smaller than

0. Therefore, for each fixed value of u there is only one real positive eigenvalue
which is given by:

λu =
1

3

(
α− [

1

2
(∆− 4(α2 + 3γ)2)]1/3 − [

1

2
(∆+ 4(α2 + 3γ)2)]1/3

)
(49)

where ∆ = −2α3 − 9αγ + 27ac(b + d). To find the Perron Eigenvalue we must
differentiate λu with respect to u and compute the zero of that polynomial that
belongs between [umin, umax].

Using the fact that ṗ = −pMu, we obtain the adjoint system:

ṗ1 = −τ1(1 + θu)(p2 − p1) (50)

ṗ2 = −β2u(2p1 − p2)− τ2(1 + θu)(p3 − p2) (51)

ṗ3 = −β3u(p1 + p2 − p3) (52)

where p = (p1, p2, p3) represents the adding vector, and the transversality condition
imposes (p1(T ), p2(T ), p3(T )) = (1, 2, 3).

6.1 Singular Flow

By theorem 1, we know that ū is a singular control. But contrary to the case in
dimension two the singular flow is more complex. In dimension three, the adjoint
vector can be eliminated and the singular control is determined as a feedback from
the state only. First let us introduce the following determinants:

D′(x) = det
(

(F + θG)x, [G,F ]x, [[G,F ], G]x
)

(53)

D(x) = det
(

(F + θG)x, [G,F ]x, [[G,F ], F ]x
)

(54)

Notice that, since G and F + θG are constant matrices, both D′(x) and D(x)
are homogeneous degree 3 polynomial functions in the variables x1, x2 and x3.
Moreover, DD′ < 0. Indeed, since we must have using > 0 it implies from equation
(1 +uθ)D′+uD = 0 and the fact that 1 +uθ > 0, that the two determinants must
have opposite sign.
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Proposition 2 Singular trajectories of order 1 are solutions of ẋ(t) = Xs(x(t)) where

Xs is given by:

Xs(x) = Gx− D′(x)

D(x) + θD′(x)
(Fx+ θGx), (55)

with the feedback control using = − D′(x)
D(x)+θD′(x) .

As it was done in [6], the vector field Xs(x) can be desingularized using the time
reparametrization ds = dt

D(x(t))+θD′(x(t)) to produce a smooth vector field

Xr
sing(x) = D(x)Gx−D′(x)Fx. (56)

Notice that Xr
sing is homogeneous of order 4.

As in [6], the geometric classification of the singular flow is equivalent to the
classification of the pair (Xsing, D+θD′). In the three dimensional case, the surface
D+θD′ = 0 plays an important role. Indeed, outside the surface D′ = 0 it is where
the control blow-up and is not admissible anymore, while the set S′ = {x;D(x) =
D′(x) = 0} represents the points where the singular trajectory might possibly cross
the surface D + θD′ = 0 with an admissible control.

To compute the Lie Bracket as well as D and D′, we introduce α = τ1 − τ2,
γ = 2τ1 − τ2, σ = β2 − β3, ψ = β2τ1, ρ = τ1 + τ2 and µ = 4β2β3 − β2

3 − 2β2
2 . Then,

the Lie Brackets are given by:

[G,F ] =

−2β2τ1 −2β2α− β3τ2 −β3τ1
β2τ1 2β2τ1 − β3τ2 β3α

0 −στ2 β3τ2

 (57)

[[G,F ], G] =

−τ1 (2β2α+ β3τ2) −
(
2β2α

2 + β3γτ2
)

−β3τ
2
1

τ1 (3τ1β2 + τ2σ) γβ3τ2 + 2β2τ1α β3

(
τ2
1 + τ1τ2 − τ2

2

)
(β3 − 2β2) τ1τ2 −τ2 (β2γ − β3τ2) −β3ατ2

 (58)

[[G,F ], F ] =

−ψβ2 τ2µ− 6ψβ2 β3 (β3 (τ1 − 2τ2) + β2 (−6τ1 + 4τ2))
ψβ2 2ψβ2 + σβ3τ2 −β3 (β2 (−4τ1 + τ2) + β3ρ)

0 σ2τ2 −β3στ2

 (59)

The determinants D and D′ are homogenous of order 3, the coefficients for the
polynomials D and D′ are given below.

Coefficients of the determinant D =
∑

i+j+k=3

Dijkx
i
1x
j
2x
k
3 :

D300 = 0

D030 = β2τ2

(
2θβ2

3τ1τ2 + β2β3 (β3γ + θτ2 (−8τ1 + τ2)) + β2
2

(
8θτ2

1 − β3γ
))

D003 = −β2β
3
3γ (τ1 + 2τ2)

D210 = θβ2

(
2β2

2 − 3β2β3 + β2
3

)
τ2
1 τ2

D201 = θβ2β3 (−2β2 + β3) τ2
1 τ2

D111 = −β3τ1(4β3
2τ1 + β2

(
−2β2

2 + θ (3β2 + β3) τ1
)
τ2

+ θ
(

2β2
2 − 7β2β3 + 2β2

3

)
τ2
2 )

D120 = 2θψ (2β2 − β3) τ2 (2ψ − β3τ2)
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D102 = −β2
3τ1

(
−σψ + β2 (2β2 + β3 + 2θτ1) τ2 − 2θστ2

2

)
D012 = β2

3

(
−8ψ2 + ψ (−σ + 2θτ1) τ2 − 2 (β2 (β2 − 2β3) + θστ1) τ2

2

)
D021 = β3

(
2θβ2

3τ1τ
2
2 + β3

2τ1 (−8τ1 + 7τ2) + 2β2β3τ2 (−2θτ1τ2 + β3ρ)

− β2
2τ2 (θτ1 (−8τ1 + τ2) + β3 (τ1 + 4τ2))

)
Coefficients of the determinant D′ =

∑
i+j+k=3

D′ijkx
i
1x
j
2x
k
3 :

D′300 = θβ2 (−2β2 + β3) τ3
1 τ2

D′030 = −2τ2(ψ2 (β2 + β3) + ψ
(
β2

2 − 5β2β3 + β2
3 − θστ1

)
τ2

+
(
β2β

2
3 + θσ2τ1

)
τ2
2 )

D′003 = −β3
3τ1τ2γ

D′210 = θβ2τ
2
1 τ2 (β3ρ+ β2 (−7τ1 + 2τ2))

D′201 = β3τ
2
1

(
4β2

2τ1 − 2β2
2τ2 + θ (2β2 − β3) τ2

2

)
D′111 = β3τ1(2θβ3τ

3
2 + β2

2

(
4τ2

1 − 15τ1τ2 + 2τ2
2

)
+ β2τ2

(
3β3ρ− 2θ

(
τ2
1 + τ2

2

))
)

D′120 = τ1τ2(2θβ2
3τ

2
2 − θβ2β3τ2 (5τ1 + 3τ2)

+ β2
2 (−2τ1 (β3 + 2θτ1) + (β3 + 8θτ1) τ2))

D′102 = β2β
2
3τ1 (τ1 − 2τ2) γ

D′012 = −2β2β
2
3τ2γ

2

D′021 = −β3τ2

(
9β2

2τ1α+ θβ3τ1τ2ρ+ β2

(
β3 (τ1 − 2τ2) 2 − θτ1τ2ρ

))
In this paper, we focus on a specific case: τ is constant and β comes from a linear
function [29]. This is equivalent to τ1 = τ2 and β2 = 2β, β3 = 3β. Using a time
reparametrization we can assume that τ = 1. We have:

G =

−1 0 0
1 −1 0
0 1 0

 , F = β

 0 4 3
0 −2 3
0 0 −3

 (60)

Proposition 3 The Lie brackets are given by:

[G,F ] = β

−4 −3 −3
2 1 0
0 1 3

 , (61)

[[G,F ], F ] = β2

−8 −17 −21
4 5 0
0 1 3

 , [[G,F ], G] = β

−3 −3 −3
5 3 3
−1 1 0

 (62)
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A straightforward computation shows that we have the following coefficients for
D and D′.

D300 = 0
D030 = 4β3(3β + 4θ)
D003 = −162β4

D210 = −2β3θ

D201 = −6β3θ

D111 = −6β3(8β + θ)
D120 = 4β3θ

D102 = −18β3(8β + 3θ)
D012 = 18β3(−7β + 3θ)
D021 = 6β3(2β + 11θ)

D′300 = −2β2θ

D′030 = −2β2(4β + 3θ)
D′003 = −27β3

D′210 = −8β2θ

D′201 = 3β2(8β + θ)
D′111 = −6β2θ

D′120 = −2β2(6β + 7θ)
D′102 = −18β3

D′012 = −36β3

D′021 = −6β2(3β + θ)

It is an easy verification that

D = 2(x2 + 3x3)D̂, (63)

with D̂ = θx2
1 +(24βx3−2θx2 +9θx3)x1 +12βx3x2−6βx2

2 +27βx2
3−8θx2

2−9θx2x3

and

D′ = β2[2θx3
1 + (8θx2 − (24β + 3τ)x3)x2

1

+((14θ + 12β)x2
2 + 6θx2x3 + 18βx2

3)x1 (64)

+(6θ + 8β)x3
2 + (6θ + 18β)x3x

2
2] + 36βx2

3x1x2 + 27βx3
3

6.1.1 The set S = {x;D(x) + θD′(x) = 0}

It is important to determine the states x ∈ S such that D(x) 6= 0 (and there-
fore D′(x) 6= 0) since they represent the states where the control explodes which
can lead that a saturation phenomenon in the neighborhood since our control is
bounded.

We can assume by homogeneity that x1 = 1. To study the singularities of the
set S we proceed as follows. First, we divide D+θD′ = 0 by β2, then we evaluate at
x1 = 1. This produce an homogeneous of degree 3 polynomial, that we denote by
PolD+θD′ , in x2, x3 that is also homogeneous of degree 2 in β, θ (we will set β = 1
for the figures). To study the singularities, a Gröbner basis with graded reverse lex

order on (θ, β, x2, x3) is computed for {PolD+θD′ ,
∂PolD+θD′

∂x2
,
∂PolD+θD′

∂x3
}. The basis

contains 37 polynomials. The last polynomial in the basis just involves the inde-
terminates θ and β. Furthermore, it is factorizable. It then follows that there are
no singularities in the positive quadrant (we omit the lengthly but straightforward
calculations here).

Proposition 4 The set S = {x;D(x) + θD′(x) = 0}∩{x1 = 1} does not contain any

singularity in the positive quadrant.

This set is represented on Figure 3 for various values of θ with a curve. It unfolds
on the 3-dimensional state space x as an homogeneous cone, with a vertex at the
origin, whose generator is the curve corresponding to x1 = 1.
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(a) Here θ varies between -0.5 and 1. Both the
negative and positive quadrants have been rep-
resented to observe that there is indeed only one
singularity at x2 = x3 = 0.

(b) D + θD′ = 0 for θ = −0.1

Fig. 3 The set S = {x;D(x) + θD′(x) = 0} for x1 = 1, x2 ∈ [−0.5, 0.5], x3 ∈ [−0.05, 0.05],
β = 1.

6.1.2 The sets S′ = {x;D(x) = D′(x) = 0}

This set represents the states where the control can cross the set S. From formula
(63), we have two cases to study: x2 + 3x3 = 0 and D̂ = 0.

Case 1: x2 + 3x3 = 0. Since we have xi > 0 along the entire trajectory, the con-
dition x2 = −3x3 is not relevant for our problem.

Case 2: D̂ = 0. We solve D̂ = 0 for θ which gives

θ =
3β(−2x2

2 + 4x2x3 + 8x1x3 + 9x2
3)

−8x2
2 − 2x1x2 − 9x2x3 + 9x1x3 + x2

1

. (65)

Outside the set of parameters where both the numerator and denominator
vanish (since θ is bounded), we can plug in this above expression for θ in D′

to obtain

D′ =
β3

Den
(27x2

3 + 48x1x3 + 12x2
1 + 42x2x3 + 28x1x2 + (66)

14x2
2)(2x3

2 − 2x1x
2
2 + 12x2

2x3 + 9x2x
2
3 − 9x1x

2
3 + 6x2

1x3)

where Den = −8x2
2 − 2x1x2 − 9x2x3 + 9x1x3 + x2

1. We therefore have two
conditions:

Pol1 = 2x3
2 − 2x1x

2
2 + 12x2

2x3 + 9x2x
2
3 − 9x1x

2
3 + 6x2

1x3 = 0, (67)

or

Pol2 = 27x2
3 + 48x1x3 + 12x2

1 + 42x2x3 + 28x1x2 + 14x2
2 = 0. (68)
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(a) Pol1 for x2 and x3 between -4 and
4.

(b) Pol2 for x2 and x3 between -4 and
4. There is a singularity at (−2,− 2

3
)

Fig. 4 Representation of the two polynomials Pol1 and Pol2 in a neighborhood of the origin
for x1 = 1.

The second condition corresponds to an union of two transversal lines inter-
secting at a singular point x2 = −2, x3 = −2

3 , which is not relevant for our
constraints on the state. The sets obtained by the two conditions are pictured
in Figure 4.

6.2 Rays

Our goal is to investigate the behavior of a singular trajectory associated with such
a singular control using in the neighborhood of the half-ray L = R+ξū, in order
to derive qualitative informations regarding the structure of the optimal control.
In particular, an interesting problem is to determine whether or not any singular
arc in the neighborhood of L converges asymptotically to L. It turns out that
this problem can be reduced to study the stability of the equilibrium of a linear
problem. Indeed, as stated in proposition 2, the projection on the state space of
the singular extremals of order 1 are the integral curves of the following vector
field:

Xs(x) = Gx− D′(x)

D(x) + θD′(x)
(Fx+ θGx)

which, using the time reparameterization ds = dt
D(x(t))+θD′(x(t)) , writes

Xr
sing(x) = D(x)Gx−D′(x)Fx.

Denote B = {e1, e2, e3} the canonical basis, B′ = {ξū, ξ2, ξ3} the Graham-Schmidt
orthonormalization of {ξū, e2, e3}, y = (y1, y2, y3) the new coordinates in B′ and
P the change-of-basis matrix from B to B′. In the new set of coordinates, the
dynamics ẋ = Xr

sing(x) becomes

ẏ = P−1
(
D(Py)G−D′(Py)F

)
Py. (69)
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and L becomes to the positive y1-axis. The transformation P being linear, D(Py)
and D′(Py) are two homogeneous degree 3 polynomial functions in the variables
y1, y2 and y3. Thus ẏ1, ẏ2 and ẏ3 are homogeneous degree 4 polynomial functions
in y1, y2 and y3. Denote

ẏ1 =
∑

i+j+k=4

pijk1 yi1y
j
2y
k
3 (70)

ẏ2 =
∑

i+j+k=4

pijk2 yi1y
j
2y
k
3 (71)

ẏ3 =
∑

i+j+k=4

pijk3 yi1y
j
2y
k
3 (72)

where the coefficients pijk1 , pijk2 and pijk3 ∈ R. Projecting on the tangent plan to
the unit sphere at (1, 0, 0), the dynamics reduces to 2-dimensional control system.
Denote z2 = y2

y1
and z3 = y3

y1
. We have

ż2 =
y1ẏ2 − y2ẏ1

y2
1

=

∑
i+j+k=4

pijk2 yi+1
1 yj2y

k
3 −

∑
i+j+k=4

pijk1 yi1y
j+1
2 yk3

y2
1

=

∑
i+j+k=4

(pijk2 zj2z
k
3 − pijk1 zj+1

2 zk3 )y5
1

y2
1

.

Similarly, we obtain

ż3 =

∑
i+j+k=4

(pijk3 zj2z
k
3 − pijk1 zj2z

k+1
3 )y5

1

y2
1

. (73)

Hence, using the time reparameterization dr = y3
1ds, we obtain the 2-dimensional

system (
ż2
ż3

)
= Q

(
z2
z3

)
=


∑

i+j+k=4

pijk2 zj2z
k
3 − pijk1 zj+1

2 zk3∑
i+j+k=4

pijk3 zj2z
k
3 − pijk1 zj2z

k+1
3

 . (74)

In this tangent plane,L reduces to the equilibrium point (0, 0). We then can study
its Lyapunov stability, see [1], by computing the eigenvalues the linearized system(

ż2
ż3

)
= J(0,0)Q

(
z2
z3

)
(75)

where J(0,0)Q is the Jacobian matrix of the application Q evaluated at (0,0).
Figure 5 depicts the results of numerical computations that we carried out to

study the Lyapunov stability of the equilibrium point (0, 0) of the linearized system
(75) for different sets of parameters τ1, τ2, β2 and β3 . We investigated two different
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2. ´ 10-6 4. ´ 10-6 6. ´ 10-6 8. ´ 10-6 0.00001
Τ1

-3. ´ 10-52

-2. ´ 10-52

-1. ´ 10-52

1. ´ 10-52

2. ´ 10-52

3. ´ 10-52

eigenvalue

Smallest eigenvalue

Largest eigenvalue

(a) 1.10−7 ≤ τ1 ≤ 1.10−5, τ2 = 3τ1, β2 = 2.10−10, β3 = 3.10−10

5. ´ 10-9 1. ´ 10-8 1.5 ´ 10-8 2. ´ 10-8
Β2

-2. ´ 10-54

-1. ´ 10-54

1. ´ 10-54

2. ´ 10-54

eigenvalue

Smallest eigenvalue

Largest eigenvalue

(b) 2.10−10 ≤ β2 ≤ 2.10−8, β3 = 3
2
β2, τ1 = 10−7, τ2 = 3.10−7

Fig. 5 These two figures show the graphs of both the largest (in blue) and smallest (in
red) eigenvalues of the Jacobian Matrix J(0,0)Q from the linearized system (75) when two of
the four parameters τ1, τ2, β2 and β3 are held constant and the two other varie along given
intervals. For these figures, we fixed θ = −1.10−3, σ = 1, umin = 1 and umax = 800 so that
the condition σ + uθ > 0 is satisfied on the interval [umin, umax].

cases. In the first case, the parameter τ1 is considered as a variable on the interval
[1.10−7, 1.10−8] and the parameter τ2 is set equal to 3τ1. The two other parameters
β2 and β3 are set equal to the constant values 2.10−10 and 3.10−10. In the second
case, the parameter β2 is considered as a variable on the interval [2.10−10, 2.10−8],
β3 is set equal to 3

2β2 and τ1 and τ2 are set equal to constant values 1.10−7 and
3.10−7. In both cases, we used θ = −1.10−3, σ = 1, umin = 1 and umax = 800.
These values were chosen to guarantee that the Perron eigenvalue λū remained
small enough so that our numerical computations could be performed and also to
satisfy the constraint σ+uθ > 0. For each combination (τ1, τ2, β2, β3), we computed,
by means of the method described previously, the corresponding matrix J(0,0)Q

from the system (75) and its two real eigenvalues. We then plotted the resulting
curves representing the evolution of both the eigenvalues as the variable parameter
runs along the interval I. In the four different cases, computations showed that the
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Jacobian matrix J(0,0)Q has always one positive and one negative eigenvalue. As a
result, (0, 0) is an unstable equilibrium point and all singular arcs do not converge
asymptotically to the half-ray L. It is observed that the eigenvalues of J(0,0)Q are
opposite of each other (i.e. tr(J(0, 0)Q) is zero).

0 5 10 15
0

1

2

3

4

5

6

7

8

t

 

 

u∗(t)

ū

using(t)

Fig. 6 In this figure we have plotted the parameter ū which maximizes the Perron eigenvalue,
the optimal control u∗(t), and the singular control using(t) obtained from the optimal trajec-
tory by using Formula (55). The numerical values of the parameters are umin = 1, umax =
8, τ1 = 0.01, τ2 = 10, β2 = 0.1, β3 = 0.9, θ = 0, and x(0) = (3 4 4)T .

The behavior of the singular control plotted in Fig. 6 supports the instability
result of the half-ray L. Indeed if L was attractive, Formula (55) indicates that the
singular control using(t) should converge to ū. But we see in Fig. 6 that the singular
control, which coincides well with the optimal control u∗(t) until it saturates, moves
away from ū as times passes.

6.3 Numerical Simulations

6.3.1 Comparison between strategies including the Perron singular control and the

PMCA procedure

Here, we compare numerically the performance of a constant Perron-singular con-
trol to the experimental strategy of 45 second pulses of umax followed by 30 minute
periods of umin over at 48 hour period.

Figure 7 displays a comparison similar to the one done for the two-dimensional
case. Once again, the comparison trajectory is obtained by applying the constant
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Perron-singular control ū over the entire trajectory but notice that in three di-
mensions it has not been proved to be the optimal strategy. It produces for this
state of parameters an improvement of a magnitude of 1013, see Table 2. In 48
hours, the experimental trajectory yields J(T ) = 1.195303141025706e + 013. In
only 27.8278 hours, the ū trajectory achieves the same J value, and in 48 hours
the ū trajectory gives J(T ) = 4.290058715348198e+ 026.

Fig. 7 A three-dimensional example comparing the experimental control (red) versus the
control frozen to u = ū (blue), for a specific set of parameters: (θ = −0.1, τ1 = 10−3,
τ2 = 3 · 10−3, β2 = 2 · 10−4, β3 = 3 · 10−4, T = 48 hours, [umin, umax] = [1, 8]). The initial
point x(0) is chosen to be on the eigenvector ξū, and integrated for T = 48 hours. The top
three plots are the same plot viewed at different zoom levels, showing the state trajectory.
Again, the experimental control is defined as 45 second pulses of umax with 30 minute umin

rest periods in between. The bottom plot shows the coressponding controls over time.

6.3.2 Conjugate points

The goal of this section is to determine numerically whether the Perron-singular
extremal posseses a conjugate point. Since the property could be dependent on
the choice of parameters we proceed to an extended search by varying the physical
parameters τi and βi as follows. We choose to fix [umin, umax] = [1, 8], and θ =
−0.1. We also fix our simulation time to 48 hours which is consistent with the
duration used by the experimentalists [18].
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Control regime J(T )

ū 4.2901 · 1026

uexp 1.1953 · 1013

umin 1.4061 · 1011

umax 6.1708 · 109

Table 2 The final costs for the three-dimensional example trajectories shown in Figure 7. Also,
for comparison, the final costs for trajectories using the same parameters but with the control
frozen to umin and umax are shown. For this set of parameters, the ū-control provides over a
1013 magnitude improvement of the final cost when compared to the traditional experiment
setting.

Using a Monte Carlo method, we randomally select 1000 sets of parameter
values such that τ1, τ2, β2, β3 ∈ [10−10, 10−6], and so that τ1 and τ2 are on the
same order of magnitude: floor(log10(τ1)) = floor(log10(τ2)), and similarly for β2

and β3: floor(log10(β2)) = floor(log10(β3)).
A search for suitable parameters suggested that these assumptions achieve two

nice properties:

1. the integrated values do not blow up to infinity before the integration reaches
T = 48 hours, and thereby avoids numerical difficulties for the computer,

2. the Perron-singular control satisfies umin < ū < umax (with strict inequality).

For each randomly selected parameter set, ū is determined (to five decimal
places of accuracy), as well as the corresponding λū. The initial state conditions
are chosen to be ξū · 10−7, and we test for the first geometric conjugate time as
described above, with the control fixed u = ū.

To compute the conjugate points, a similar algorithm to Hampath was used
and coded in Matlab.

For all but two of the 1000 sets of parameters, the Perron-singular arc does
not contain a conjugate point for parameters over a duration of 48 hours. For
the set τ1 = 0.948002359333351 ∗ 10−6, τ2 = 0.059641623585366 ∗ 10−6, β2 =
0.026871234524279∗10−6 and β3 = 0.098668004398028∗10−6 we have ū = 5.43549
and a conjugate time is found at 133920 seconds = 37.2 hours. Along the second
set of parameters with a conjugate time, we have tc =91450 seconds = 25.4 hours.

The results in this section are inconclusive for several reasons. First, the values
for the physical parameters had to be chosen to allow an integration over a 48
hours period of time for both the original system and the variational equation.
This allowed us to determine the existence or not of the conjugate point. However,
for these choices it was also observed that no improvement on the final cost is
produced with a Perron-singular control over the experimental procedure. For the
values of parameters previously used for comparison, see section 6.3.1, that display
significant improvement we have that the state variables of the variational equa-
tion blow-up quickly and the conjugate points cannot be computed. This suggests
that the model needs to be altered for instance by incorporating a component to
guarantee some sort of threshold in the evolution of the state and adjoint variables.
The second issue in this section is the existence of conjugate points for two sets
of parameters over the pool of 1000 candidates. It is doubtful that this could be
attributed to numerical issues, but it has been observed that on those two cases a
very slight modification in the parameters (taking 0.99β3 instead of β3) produced
a Perron-singular without a conjugate point. This should be further analyzed.
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7 The continuous model

In this last section, we give some tracks to tackle the case of the continuous
model (2). For the sake of simplicity, we consider the uniform fragmentation ker-
nel κ(y, z) = 1

z , meaning that a polymer can break anywhere along its length. We
define the corresponding fragmentation operator F by

(Ff)(y) = 2

∫ ∞
y

β(z)

z
f(z) dz − β(y)f(y)

and the growth operator ∂yτ by

(∂yτf)(y) = ∂y
(
τ(y)f(y)

)
.

With this notation, the continuous version of the relaxed problem (11) writes

∂tf = −∂yτf + u(t)(F − θ∂yτ)f. (76)

Considering the duality bracket

〈f, ϕ〉 =

∫ ∞
0

f(y)ϕ(y) dy,

we define the dual fragmentation operator F∗ by

〈Ff, ϕ〉 = 〈f,F∗ϕ〉

where f and ϕ are any functions such that the left and right hand sides are well
defined. Using the Fubini theorem, we can explicitely compute

(F∗ϕ)(y) = 2
β(y)

y

∫ y

0

ϕ(z) dz − β(y)ϕ(y).

The continuous eigenfunctions associated with the optimal control ū are defined
by the Perron spectral problem (see [17,9])

λ̄PΞ = −∂yτΞ + ū(F − θ∂yτ)Ξ, Ξ(y) > 0,

∫ ∞
0

Ξ(y) dy = 1,

λ̄PΦ = τ∂yΦ+ ū(F∗ + θτ∂y)Φ, Φ(y) > 0,

∫ ∞
0

Φ(y)Ξ(y) dy = 1.

With these definitions, the analogue of the Legendre condition (31) writes

〈(F∂yτ − ∂yτF)Ξ, (F∗ + θτ∂y)Φ〉 > 0. (77)

We compute

F∂yτΞ(y) = 2

∫ ∞
y

β(z)

z
∂z(τ(z)Ξ(z)) dz − β(y)∂y(τ(y)Ξ(y))

= −2
β(y)τ(y)

y
Ξ(y)− 2

∫ ∞
y

zβ′(z)− β(z)

z2
τ(z)Ξ(z) dz

− β(y)∂y(τ(y)Ξ(y))
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and

∂yτFΞ(y) = 2∂y

(
τ(y)

∫ ∞
y

β(z)

z
Ξ(z) dz

)
− ∂y(τ(y)β(y)Ξ(y))

= 2τ ′(y)
∫ ∞
y

β(z)

z
Ξ(z) dz − 2

τ(y)β(y)

y
Ξ(y)

− β′(y)τ(y)Ξ(y)− β(y)∂y(τ(y)Ξ(y)).

We get

〈(F∂yτ − ∂yτF)Ξ, (F∗ + θτ∂y)Φ〉 = (78)∫ ∞
0

[
β(y)

(2

y

∫ y

0

Φ(z) dz − Φ(y)
)

+ θτ(y)Φ′(y)
]

×
[
2

∫ ∞
y

(τ ′(y)
τ(z)

+
β′(z)
β(z)

− 1

z

)τ(z)β(z)

z
Ξ(z) dz − β′(y)τ(y)Ξ(y)

]
dy.

For general coefficients, the sign of this quantity is not clear since it requires fine
informations on the eigenfunctions Ξ and Φ. The profiles of these eigenfunctions
have been studied in [2], but only asymptotically when y tends to zero or infinity.
Here more precise informations are necessary to deduce the bracket, and new
investigations still have to be carried out.

Nevertheless we can give some words about the simple case, but biologically
relevant [21], which corresponds to a constant polymerization rate τ(y) = τ and
a linear fragmentation rate β(y) = βy. In this case the dual eigenfunction Φ is
explicitely given (see [17]) by

Φ(y) =
1

2

(
1 +

√
ūβ

(1 + θū)τ
y
)
.

With this expression we can compute for any y > 0,[
β(y)

(2

y

∫ y

0

Φ(z) dz − Φ(y)
)

+ θτ(y)Φ′(y)
]

=
βy

2
+

1

2
θτ

√
ūβ

(1 + θū)τ

and[
2

∫ ∞
y

(τ ′(y)
τ(z)

+
β′(z)
β(z)

− 1

z

)τ(z)β(z)

z
Ξ(z) dz − β′(y)τ(y)Ξ(y)

]
= −βτΞ(y).

Finally we get, using the normalizations
∫
Ξ =

∫
ΦΞ = 1,

〈(F∂yτ − ∂yτF)Ξ, (F∗ + θτ∂y)Φ〉 = −θβτ
2

√
ūβτ

1 + θū
+
β2τ

2

∫ ∞
0

y Ξ(y) dy

= −θβτ
2

√
ūβτ

1 + θū
+
βτ

2

√
(1 + θū)βτ

ū

= −βτ
2

√
ūβτ

1 + θū

(
θ − 1 + θū

ū

)
=
βτ

2ū

√
ūβτ

1 + θū
> 0.
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This indicates that the Perron strategy is locally optimal for small times. This
conclusion can even be strengthened by reducing Equation (76) to a system of two
ordinary differential equations, as it is used in [21] to perform a stability analysis.
Denoting

N(t) :=

∫ ∞
0

f(t, y) dy and M(t) :=

∫ ∞
0

yf(t, y) dy

we obtain by testing Equation (76) against 1 and y, the closed 2-dimensional
system {

Ṅ = u(t)βM,

Ṁ = (1 + θu(t))τN.
(79)

The optimal control problem for the continuous model is equivalent to the ques-
tion of maximizing the quantity M(T ) subjected to the dynamics (79). But we
know [14] that in dimension 2, the best strategy consists in the control which
maximizes the Perron eigenvalue.
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