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Abstract

This study applied two mathematical algorithms, LUST and D-basis, to the identification

of prognostic signatures from cancer gene expression data. The LUST algorithm looks for

metagenes, which are sets of genes that are either over-expressed or under-expressed in

the same patients. While LUST runs unsupervised by clinical data, the D-basis algorithm

uses implications and association rules to relate gene expression to clinical outcomes. The

D-basis selects a small subset of the metagene (a signature) to predict survival.

The two algorithms, LUST and D-basis, were combined and applied to mRNA ex-

pression and clinical data from TCGA for 203 stage 1 and 2 stomach cancer patients.

Two small (4-gene) signatures effectively predict survival in early-stage stomach cancer

patients. These signatures could be used as a guide for treatment.

The first signature (DU4) consists of genes that are under-expressed on the long-

survival/low-risk group: FLRT2, KCNB1, MYOC, TNXB. The second signature consists

of genes that are over-expressed on the short-survival/high-risk group: ASB5, SFRP1,

SMYD1, TACR2. Another 9-gene signature (REC9) predicts recurrence: BNC2, CCDC8,

DPYSL3, MOXD1, MXRA8, PRELP, SCARF2, TAGLN, ZNF423. Each patient is as-

signed a score that is a linear combination of the expression levels for the genes in the

signature. Scores below a selected threshold predict low risk/long survival, while high

scores indicate a high risk of short survival.

The metagenes associate with TCGA cluster C1. Both our signatures and cluster C1

identify tumors that are genomically silent, and have a low mutation load or mutation

count. Furthermore, our signatures identify tumors that are predominantly in the WHO

classification of poorly cohesive and the Lauren class of diffuse samples, which have a

poor prognosis.
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1 Introduction

The American Cancer Society estimates that 26,560 people in the United States will be

diagnosed with stomach cancer in 2021 and an estimated 11,180 deaths will occur that

year (American Cancer Soc. 2020). While the United States has one of the lowest rates

for stomach cancer, other countries such as South Korea have close to 8 times the number

of cases each year (population adjusted) (Ferlay et al. 2018; Prashanth and Barsouk 2018).

Worldwide, stomach cancer is one of the most common cancer types and one of the top

causes of cancer deaths.

As with many other cancers, prognosis for stomach cancer correlates well with the

stage of the tumor. Five year survival for stage 1 cancer is approximately 65%, for stage 2

survival drops to approximately 35%, and for stage 3 the survival drops to approximately

25% (McLoughlin 2004). When the tumor reaches stage 4, there are no survival statistics,

since virtually no one survives. The survival rate for stage 1 stomach cancer is surprisingly

low compared to other cancers such as breast, ovarian, prostate, colon and melanoma stage

1 tumors (close to 90%).

The transcriptome can be used to identify tumor types as well as prognosis (Sørlie

et al. 2001). A number of methods have been used to identify genes of interest including

clustering, principal component analysis, and more recently machine learning methods

(Alkhateeb et al. 2019). Genetic information can be used to understand the tumors at a

molecular level and to predict clinical outcomes. A patient’s prognosis can be a factor in

determining treatment.

Our analysis used publicly available data comprising mRNA expression and clinical

data from TCGA. Two innovative algorithms were combined to analyze the expression

and outcome data, which identified two genetic signatures for predicting survival in stage

1 and stage 2 stomach cancer patients.
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2 Methods

2.1 Dataset

mRNA gene expression and clinical data were downloaded for 415 stomach cancer pa-

tients from The Cancer Genome Atlas (TCGA). We then segregated the data for stage 1

and 2 stomach adenocarcinoma, resulting in 203 patients.

The mean expected survival time for this group based on the ecdf (empirical cumula-

tive distribution function) is 842 days. Many of the patients (112) are censored at fewer

than 842 days. Also, we want to leave a window around the mean: those dying or cen-

sored near the mean should perhaps not be classified as long- or short-term survivors (15

patients). Thus we restrict our data pool to those who died on or before 661 days from di-

agnosis (47 short-term survivors) and those who survived at least 1023 days (29 long-term

survivors), for a total of 76 samples.

2.2 Analysis with LUST and D-basis

We use two totally different algorithms to identify candidate genes for signatures from the

20,531 genes in the TCGA data.

• The LUST algorithm looks for metagenes, which are sets of genes that either over-

express or under-express in the same patients. A description of the LUST algorithm,

and MATLAB code implementing it, can be found at the LUST github site1. The

github site gives the metagenes found with each of the 33 types of cancer in the

TCGA database.

• While LUST runs unsupervised by clinical data, the D-basis algorithm uses impli-

cations and association rules to relate gene expression to clinical outcomes, in this

case survival and recurrence. A description of the D-basis algorithm, and C++ code

1https://github.com/tristanh314/lust-cancer-2019
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implementing it, can be found at the D-basis github site2.

The algorithms are run sequentially. LUST is run on expression for the entire TCGA

gene set, and identifies the metagenes as clusters of candidates. D-basis takes the meta-

genes output by LUST and refines them to small prognostic signatures. The workflow is

diagrammed in Figure 1.

Note that both algorithms look for signals that represent variation within cancer pa-

tients, not differences between tumors and normal tissue. A mathematical description of

these algorithms is given in Appendix I.

2.3 Pathway analysis

Pathway analysis for metagenes R1, R2, and R3 was performed using Database for An-

notation, Visualization, and Integrated Discovery (DAVID) (Huang da et al., 2009; ver-

sion 6.7, https://david-d.ncifcrf.gov) based on Kyoto Encyclopedia of Genes and Genomes

(KEGG) database and using the Panther Classification System (http://www.pantherdb.org/)

based on reactome pathways. To conduct KEGG pathway analysis, the adjusted p-value

< 0.05 was used as the threshold. To conduct Panther Classification System analysis, the

highest enriched pathways were selected (∼100 fold enrichment).

2https://gitlab.com/npar/dbasis
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Figure 1: Flow chart of our method of combining algorithms to produce and test prognostic
signatures.

3 Results

3.1 The signatures DU4 and DO4

The LUST github site gives the metagenes associated with each of the 33 types of cancer in

the TCGA database. Some metagenes occur with many different cancers, while others are

specific to only one or a few. LUST identifies 5 metagenes with stomach cancer. The most

prominent is designated as the R metagene, which is unique to stomach cancer. Second is

the A metagene, which is associated with immune response, and is found with all cancer

types. Both split into 3 parts: R1, R2, and R3, and A1, A2, and A3, respectively. The

genes in each submetagene are given in Appendix III. The remaining 3 occur in multiple

cancers, but seem to have little predictive value for stomach cancer. The R3 submetagene

is also found with esophageal cancer.

To extract from the metagene a smaller set of genes (signature) to predict survival,

we used the D-basis algorithm, adding rows corresponding to clinical information to the
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matrix of discretized gene expression.

TheD-basis algorithm, starting with the metagenes found by LUST, supplies two lists

of genes that are candidates for predictive signatures. The first list consists of genes that

are under-expressed on the long-survival/low-risk group. The top 4 genes on this list, all

from metagene R, form an effective signature, which we label as DU4: FLRT2, KCNB1,

MYOC, TNXB.

The second list of candidates consists of genes that are over-expressed on the short-

survival/high-risk group. These genes are from metagenes R and A2. Those from meta-

gene A2 give a reasonably good signature, but the ones from metagene R give more ac-

curate predictions. Thus we get the signature DO4 consisting of the top 4 genes in the

second list: ASB5, SFRP1, SMYD1, TACR2. We will formulate tests to predict survival

based on these signatures.

3.2 Evaluating signatures: Kaplan-Meier curves and accuracy tests

Suppose we are given a signature consisting of k genes. The first task is to convert the

expression data into a score for each patient. Consider the k ×N matrix M of expression

restricted to those k genes for N patients. (Expression has been preprocessed as usual,

including log transform and quantile normalization.) The matrix M has a singular value

decomposition M =
∑m

r=1 σrurv
T
r with |σ1| ≥ |σ2| ≥ · · · ≥ |σm| and ur, vr orthonormal

sets of column vectors of length k, N respectively (Axler 2015; Dym 2014).3 Note this

decomposition is not very sensitive to small perturbations of the data. The matrix σ1u1v
T
1

is the rank-1 matrix N that minimizes the Euclidean (or Frobenius) distance ‖M–N‖ from

the original expression matrix M. That means σ1u1v
T
1 is the best rank-1 approximation

of M, and it is very stable if the first singular value σ1 is such that |σ1| is much greater

than |σ2|. For expression matrices of genes in a signature derived from LUST (or similar

clustering algorithms), it is usually the case that |σ1| is much greater than |σ2|, so that the
3While singular value decomposition is the standard mathematical terminology, in applied mathematics

and statistics it is usually called the principal component analysis.
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first component is by far the most important and stable. In particular, u1 does not change

much if additional columns (patients) are added to, or removed from, the data.

The vector of e-scores is s = uT1M. Thus the e-score for patient j is given by sj =

uT1mj where mj is the j-th column of M (the expression levels for patient j). A related

method is used in Okimoto et al. (2016).

It is useful to normalize the e-scores in some way; our normalization has −2 as the

minimum value and 0 as the median, so that scores typically range from −2 to about 4.

Methods to evaluate the effectiveness of a signature include

• Kaplan-Meier survival curves,

• accuracy (percentage of true positive and true negative predictions),

• the F1-score, the harmonic mean of precision and recall (sensitivity).

These criteria require some explanation.

To treat the e-score as a predictor of risk, we set a threshold θ on the e-score to divide

the population into low-risk and high-risk groups. If a patient’s score sj < θ, then patient

j has low risk, while if sj ≥ θ, then patient j is high-risk. (Of course, it could be the

other way around, but for both our signatures low expression corresponded to low risk.)

The threshold is usually chosen to maximize some measure. For this study, we chose θ

to maximize the accuracy, as described below. We also tried choosing θ to maximize the

mutual information (from information theory (Cover and Thomas 2006); see Appendix I)

between the e-score and survival, but this gave the same thresholds as accuracy.

To apply the Kaplan-Meier method, survival analysis is done independently on the

low-risk and high-risk groups, and the p-value for the log-rank test and/or Cox regression

measures the probability that these two populations are the same. If the p-value is very

small, then the score based on the signature has divided the patients into significantly

different risk groups with respect to survival.

The accuracy of a predictor is based on the confusion matrix, as shown in Table 1.
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low score high score

long survival true neg false pos

short survival false neg true pos

Table 1: Confusion matrix when the e-score is used as a predictor of risk. Thresholds must
be set for both scores and survival.

The accuracy is

acc =
TP + TN

N

where TP is the number of true positives, TN is the number of true negatives, and N is

the number of samples.

Accuracy is one of several measures of effectiveness that can be computed from the

confusion matrix. While accuracy was used to determine the threshold, we also report the

F1-score for each signature, given by

F1 =
TP

TP + 1
2
(FP + FN)

Other alternative measures include weighted accuracy and the Fβ score for a parameter β.

The choice of the weights or β depends on medical considerations, so for this note we use

only accuracy and the F1-score. The article Hughes-Oliver (2019) discusses the various

notions of accuracy, and compares accuracy to ROC curves.

We will visualize the confusion matrix with plots of survival against e-scores, as done

in figures below. True positives will be in the lower right quadrant, false positives in the

upper right quadrant, etc., mimicking Table 1.

3.3 Results: evaluating the signatures DU4 and DO4

The Kaplan-Meier survival curves for DU4 are given in Figure 2, along with the p-values

for the logrank test and Cox regression.

To use accuracy, we must set a threshold θ for e-scores. Maximizing either the ac-
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Figure 2: Kaplan-Meier survival curves for the 4-gene signature DU4. Survival times are
in days. The top curve represents patients with low e-scores.

curacy or the mutual information between the e-score and survival gives the same result:

θ = −0.9. With this value, we get the values in Table 2, for an accuracy of
58

76
= 76%.

The F1-score for DU4 is 0.83; note the sensitivity is an amazing
45

47
= 96%.

low score high score

long survival 13 16

short survival 2 45

Table 2: Table for the signature DU4.

The confusion matrix for DU4 is illustrated in Figure 3. The patients are along the

horizontal axis, arranged in order of increasing e-scores. Their e-scores are the ascending

curve, with labels on the left vertical axis. There is a vertical line at θ = −0.9. Survival

times are on the right vertical axis, with a horizontal line at the mean expected survival

time of 842 days. The + signs indicate the time of a patient’s death, while circles represent
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uncensored patients that are still alive.
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Figure 3: Predictions vs. survival for the DU4 signature.

Now we consider the same analyses for the signature DO4. The Kaplan-Meier sur-

vival curves and p-values based on the signature DO4 are given in Figure 4.

For the confusion matrix, using either method (maximizing accuracy or mutual infor-

mation), we get a threshold of θ = −0.9. With this value, the corresponding table is found

in Table 3, for an accuracy of
56

76
= 74%. The corresponding F1-score for DO4 is 0.80.

Finally, the results in Table 3 are illustrated in Figure 5.

low score high score

long survival 16 13

short survival 7 40

Table 3: Table for the signature DO4.

Thus the two signatures are comparable in terms of general effectiveness, with DU4

being more sensitive than DO4. Both signatures were tested for robustness by dividing
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Figure 4: Kaplan-Meier survival curves for the 4-gene signature DO4. Survival times are
in days.

the patient pool into two equal parts, and using one half to generate predictions for the

other half. As noted earlier, the test vector u1 for the e-score should not change much

when we use a large subset of the patient pool. For each half, the correlation (dot product)

between u1 and the new first singular vector u′1 was > 0.999. Consequently, patients did

not change risk status when only half the samples were used to generate the prediction,

and there were no significant differences in the results: each half successfully predicted

survival in the other half.

3.4 Validation

While our emphasis is on the method of obtaining signatures, we need to show that com-

bining algorithms yields accurate prognostic signatures. The paper Xie et al. 2020 dis-

cusses different methods of finding predictive signatures, and analyzes 39 prognostic sig-

natures for gastric cancer from the literature. We ran a test to compare those 39 signatures,

10



0 10 20 30 40 50 60 70 80

Patient number

-3

-2

-1

0

1

2

3

4

5

6

7

S
co

re
 o

n 
te

st

 

 

 

0

500

1000

1500

2000

2500

3000

3500

S
ur

vi
va

l t
im

e 
(d

ay
s)

Figure 5: Predictions vs. survival for the DO4 signature.

plus one from Meng et al. 2020, with DU4 and DO4. We tested each signature on the

TCGA stage 1 and 2 stomach cancer cohort, exactly as described above. For each signa-

ture, we found the threshold e-score that produced the most accurate prediction, and also

recorded the logrank and Cox regression p-values for that classification. The results for

DU4, DO4, and the top 9 signatures from the literature are shown in Table 4. The sig-

natures DU4 and DO4 were clearly the most accurate, with a few close contenders. The

remaining 31 signatures, not shown, had less accuracy.

It is interesting to note that the 3rd place signature, from Dai et al. 2019, contains 2

genes from metagene R, 7 genes whose expression is strongly correlated with DU4, and 4

more genes. The 5th place signature, from H. Jiang et al. 2020, has 1 gene from R, 6 genes

whose expression is strongly correlated with DU4, and 3 more genes. The 8th place gene,

from Yin et al. 2013, contains 20 genes from R (mostly R2), plus 53 more. The remaining

top signatures, however, did not intersect metagene R.

(In the preceding discussion, we say that a gene is strongly correlated with DU4 if its
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sig # # genes source logrank Cox accuracy

1 4 DU4 0.00013 0.01 0.76

2 4 DO4 0.0004 0.0054 0.74

3 13 Dai 0.009 0.008 0.72

4 16 B. Jiang 0.00037 0.0068 0.71

5 10 H. Jiang 0.001 0.01 0.71

6 5 Song 0.063 0.01 0.71

7 3 Chen 0.01 0.0094 0.7

8 74 Yin 0.008 0.017 0.68  

9 6 Peng 0.016 0.027 0.67

10 9 Wang 0.023 0.06 0.67

11 29 Motoori 0.0005 0.0013 0.66

Table 4: The most accurate signatures for predicting survival in stomach cancer: DU4,
DO4, and the top 9 from the literature.

differential expression between the low-risk and high-risk groups, as determined by DU4,

has a p-value less than 10−8.)

We also tested the signatures on the GEO (Gene Expression Omnibus) stomach cancer

dataset GSE84433 (Yoon et al. 2020); see Appendix II.

3.5 Comparison in WHO and Lauren

To determine how well the signatures segregated the tumors analyzed along with other

clinical parameters, we used TCGA clinical and expression data easily queried on cBio-

Portal. Although we used the TCGA legacy tumor set for our analyses, we wished to com-

pare our signatures to the results from the 2014 TCGA stomach cancer manuscript (TCGA

Research Network 2014). To do so, from our set of 203 samples analysed, we removed 52

samples that the TCGA had removed from the legacy set during the 2014 publication. We

then compared the remaining 151 tumors, for gene expression of the genes in our meta-

genes or signatures using a z-score of±2.0 different from diploid samples. Using the gene

expression we were able to segregate the tumor sample set, and the number of tumors for

this segregation is shown in Table 5 as a ratio of affected over unaffected. For example, tu-

mors with high expression of genes in the signature DO4 are affected and tumors with low
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Table 5: shows the comparison of the metagenes R1, R2, and R3 and the signatures DO4
and DU4 to analysis of the TCGA stomach cancer dataset by cBioPortal. The first column
identifies the entries in the 5 columns. The five columns to the right correspond to the
metagenes R1, R2, R3 and the signatures DO4, DU4. The information underneath the row
identifying the metagenes and signatures have a corresponding title in the first column.
If there is a p-value given it corresponds to the row above it. If there is a row grayed
out it is because the corresponding p-value was above 0.05. The row altered/unaltered
is the number of samples out of the total of 151 that the metagene or signature identify.
As an example the first column for R1 which encompasses 45 genes, out of the 151 tumor
samples, 33 had altered expression of R1 and 118 did not. All entries below in that column
refer to this segregation of tumor samples. As an example for gene expression clusters
where there are 4 clusters identified in the TCGA dataset we found that for the 33 tumors,
57% were from the C1 cluster and for the 118 tumors only 2% were from the C1 cluster.
The rest follows this nomenclature. The mutation count average is the average number of
mutations found for the altered vs the unaltered samples. The Lauren and WHO classifiers
are histologic classifiers for stomach cancer. Lauren uses two general categories and WHO
break down into 4 general categories, each with the addition of a mixed category. The
molecular subtype is a measure of the genome of the tumor samples (if the sample is EBV
positive, has microsatellite instability, has many large chromosomal mutations, or has very
few mutations).The p-value for mutation count was calculated with Wilcoxon test and all
others with Chi squared test.
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expression of genes in DO4 are unaffected. The signatures segregated the tumors along

several important clinical parameters: gene expression clusters (enriched for cBioPortal

cluster C1), mutation count (low mutation load), WHO classification (enriched for poorly

cohesive), molecular subtype (enriched for genetically silent), and Lauren class (enriched

for diffuse). All these factors are associated with a poor prognosis. We also analyzed the

signatures with the entire tumor set, with similar results; see Table 7 in Appendix III.

A slightly different analysis shows these distinctions in another light. We ask: what

clinical properties are differentiated by the low-risk and high-risk groups? In this case we

used all 203 stage 1 and 2 patients from TCGA, with no censoring, and the signature DU4

with a threshold score θ = −0.9 to divide low/high risk.

For the Lauren classification, 37 patients had diffuse tumors. Of these, 2 were in the

low-risk group (based on the signatures) and 35 were in the high-risk group. For the WHO

classification, 31 tumors were deemed poorly cohesive, all of which were assigned to the

high-risk group. A similar distinction occurred with the molecular subtype classification:

30 tumors were deemed genetically silent, with 2 in the low-risk group and 28 in the high-

risk group. Other classes had some differences between low and high risk, but nothing as

marked as the ones above.

The results are identical if we divide low/high risk using the signature DO4 with a

threshold score θ = −1.0.

3.6 Pathway analysis

The results of KEGG pathway analysis using DAVID on metagenes R1, R2, and R3 are

given in Appendix III, Tables 8, 9, 10. For metagene R1 many cancer-related pathways

were identified, including PI3K-AKT, RAS, G-protein pathways, and PTK2 signaling.

Analysis of metagene R2 identified pathways involved in collagen/extra-cellular matrix

homeostasis and cellular interaction with the ECM. Pathway analysis of metagene R3

identified many pathways that are specific to the stomach, such as smooth muscle contrac-
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tion, but also cancer-related pathways that were found with R1.

Using Panther Classification Systems for Reactome, pathway analysis of the meta-

genes found similar results as the KEGG analysis. Signal transduction pathways were

identified for R1 (such as over 100-fold enrichment were FRFR, SHH and PI3K-AKT

pathways). The most enriched pathways for R2 involved extra-cellular matrix homeosta-

sis (including collagen degradation, collagen chain trimerization, dermatin sulfate biosyn-

thesis, and ECM proteoglycan synthesis), and for R3 a mix of smooth muscle contraction

and signal transduction pathways.

3.7 Recurrence

Finding signatures that predict recurrence turns out to be more difficult. Here we ran the

tests on all stages of stomach cancer, censoring all patients who have survived below the

empirical mean of 895 days without recurrence. That gives a pool of 139 patients, 75 of

whom had recurrence before 895 days. Thus “failure” in this scenario is recurrence, which

is not the same as “disease-free survival”, since deaths before 895 days due to the original

tumor are censored. (We are interested in when a patient who is at one point disease-free

has a recurrence.)

Again the D-basis provided a list of candidates from the R and A metagenes, and the

list of top candidates from metagene R provided the most accurate signature for predicting

recurrence: BNC2, CCDC8, DPYSL3, MOXD1, MXRA8, PRELP, SCARF2, TAGLN,

ZNF423. This signature is designated as REC9. The table for recurrence prediction is

Table 6, with an accuracy of
92

139
= 66%. The F1-score for REC9 is 0.70. The Kaplan-

Meier curves and prediction figures for recurrence are given in Figures 6 and 7.
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low score high score

long non-recurrence 36 28

short recurrence 19 56

Table 6: Table for the 9-gene recurrence signature REC9.
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Figure 6: Kaplan-Meier curves for non-recurrence with the 9-gene signature.

4 Discussion

We have combined two algorithms to analyze tumor gene expression along with clinical

data to identify gene expression that associated with survival. Using the first algorithm

(LUST) we identified metagenes, which were refined by D-basis to signatures DU4 and

DO4 that accurately predicted survival.

The metagenes identified as R1, R2, and R3 associate with cBioPortal gene expression

cluster C1. The metagenes identify tumor sets that are enriched for mutation of the CDH1

gene. The TCGA analysis found that tumors that were in the genomically silent grouping,

were enriched for CDH1 and RHOA gene mutation (TCGA Research Network 2014).
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Figure 7: Predictions vs. non-recurrence for the 9-gene signature REC9. The + signs
indicate the time of recurrence, either distant or local, while circles represent patients who
survive at least 895 days without recurrence.

The metagenes identify tumor sets that are also in the genomically silent range and have

low mutation loads. Interestingly, the tumor sets identified by the metagenes are enriched

for mutation of the CDH1 gene, but not the RHOA gene. The gene signatures refined

from the metagenes recapitulate the above findings from the metagenes. Furthermore, the

signatures DU4 and DO4 identify tumors that are predominantly in the WHO classification

of poorly cohesive and the Lauren class of diffuse samples. The WHO classification of

poorly cohesive identifies tumors (including those tumors with signet cells present) that

have a poor prognosis (Jouini et al. 2020). Tumors of the Lauren classification that are

classified as diffuse are tumors that are less well differentiated, and thus also have a poorer

prognosis. The presence of a CDH1 mutation overlaps with diffuse tumors identified by

Lauren classification (TCGA Research Network 2014; X. Li et al. 2016; Nemtsova et al.

2020). While mutation of CDH1 can contribute to a poor outcome, it is only one of several

such factors. As a prognostic marker for survival, the presence of a CDH1 mutation has an
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accuracy of only 53%. That is, with the same TCGA sample set, if patients with a CDH1

mutation are declared high-risk and those without low-risk, only 40 of the 76 patients are

labelled correctly.

Pathway analysis for metagenes R1, R2, and R3 found pathways that could be segre-

gated into roughly two categories, pathways of normal stomach genes and pathways that

were more cancer related.

The metagenes were used to identify the signatures DO4 and DU4. Many of the genes

in DO4 and DU4 have been indicated as factors in cancer by other studies: FLRT2 in Dai

et al. (2019), TNXB in Yan et al. (2019), SFRP1 in S. Li et al. (2018), and SMYD1 in

J. Song et al. (2019). More details are in Appendix II.

A recent study (Zhou et al. 2020) found 9 genes whose over-expression indicated a

poor prognosis in stomach cancer. These genes were found using the ESTIMATE algo-

rithm on TCGA data, and validated on GEO dataset GSE84433 (Yoon et al. 2020). Of the

9 genes, 7 were from R3 (CNN1, FLNC, HAND2, MYL9, PLN, SPARCL1, SYNC), 1

was from R2 (SFRP2), and only 1 not associated with the R metagene (CARTPT). That

study also identified 31 genes more generally associated with stomach cancer survival: 1

was from R1, 2 from R2, 14 from R3, 4 from the R metagene additional genes, and 10

were not part of the R metagene.

Thus our combination of algorithms has found the large set R of related genes that

seem to be a factor in the progression of stomach cancer, and two small signatures within

it that predict survival.
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5 Appendix I: Mathematical description of the algorithms

5.1 Data conversion

The original expression of 20,531 mRNA data from tumor tissue of 415 stomach cancer

patients from TCGA was log transformed and quantile normalized before discretizing. To

obtain the entry table for LUST, each entry of original table was converted to 0, +1 or

−1. These entries indicate the over-expressed (+1), under-expressed (−1), or normally

expressed (0) genes for each patient. The conversion is done using a density parameter

D, i.e., the proportion of non-zero entries. In the current study, the value of D = 0.5 was

used so that roughly a quarter of values were converted to +1 and a quarter to −1. Other

tests were done for values 0.4 ≤ D ≤ 0.6, which did not change the results significantly.

5.2 The LUST algorithm

The LUST (Lattice Up-Stream Targeting) algorithm is a discrete method that uses a vari-

ation of association rules to find clusters of genes with similar expression patterns, and

within those clusters selects groups of genes that maximize some given objective function.

The objective function might represent for example the degree of interaction between the

genes (as reflected in the expression data), or some clinical outcome such as survival.

It should be emphasized that we are comparing gene expression for tumors, not tumor

vs. normal. We seek genes whose expression varies significantly in cancer patients, with

the intention of using this information to tailor treatment based on genetic signatures.

In its function used for this paper, LUST is applied to the TCGA mRNA expression

data, with an objective function that measures the degree of interaction between the genes.

This allows us to identify groups of genes that are part of the same biological process,

e.g., immunity or cell division or metabolism, that have sufficient variation across the

samples. These we will refer to as metagenes. Knowing the metagenes that occur in the

gene expression for a particular type of cancer allows us to determine the biological factors
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that affect the progress of the disease, using gene functional annotation.

The LUST program can also run in a second mode, with an objective function that

depends on clinical outcomes. By restricting the input to gene expression from a metagene,

and maximizing the objective function, LUST produces signatures predictive of survival.

This has been done effectively for many different types of cancer Nation et al. 2017. But

for stomach cancer, we found that the signatures produced by using LUST for the first

step, and the D-basis for the second step, were more accurate than those produced by

LUST alone.

The LUST programs are written in MATLAB (MathWorks, Natick, MA, USA). The

programs, a manual, and the different metagenes found in 33 different cancer data sets in

TCGA are presented in our GitHub site: https://github.com/tristanh314/lust-cancer-2019.

The input of the LUST algorithm consists of:

• Data which can be a combination of gene expression, microRNA expression, methy-

lation, and possibly other variables.

• The values of parameters density and conftol (short for confidence tolerance).

The output of the algorithm is:

• Groups of genes (metagenes), ranked using an objective function.

Not all the groups obtained need be related to the disease and/or clinical outcomes, and

some will be more relevant than others, but the results can be analyzed to identify meta-

genes of interest.

Assume the density D has been fixed. The parameter conftol adjusts the sensitivity of

the algorithm; usually we take conftol .= 0.75. The optimum value of conftol was between

0.7 and 0.8 for every cancer considered.

For a row (gene) X , let X+ denote the set of columns (samples) that are marked +1,

and let X− denote the set of columns that are marked−1. We say that X regulates Y , and

write X → Y , if the following hold:
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1.
|X+ ∩ Y +|
|X+|

≥ conftol

2.
|X− ∩ Y −|
|X−|

≥ conftol

In words, X regulates Y if the conditional probability that a patient over-expresses Y ,

given that the patient over-expressesX , is at least conftol, and likewise for under-expression.

The premise is that if X does strongly regulate Y biologically, then it will be reflected as

regulation in the data.

Now we say that gene X is equivalent to gene Y , and write X ≈ Y , if X → Y and

Y → X both hold. This means that X and Y are acting in concert, and heuristically are

part of some common process.

The algorithm begins by calculating:

1. for each gene X , a list of all genes Y such that X → Y ,

2. for each gene X , a list of all genes Y such that X ≈ Y .

Now we form groups of genes as follows. Initially, the groups consist of a gene X

and all the genes equivalent to it,

FX = {Y : Y ≈ X}.

These groups may overlap substantially. Overlapping groups are merged according to the

following scheme: if a larger group contains at least overlappercent (a parameter with

default value 0.6) of the genes of a smaller group, then the groups are combined.

The LUST algorithm will generate many groups that are candidates for metagenes.

These candidates are ranked using an objective function that we seek to maximize. We

regard a metagene as a directed graph, with edges determined by the relation X → Y .

The objective function should be a graph-theoretic measure of the probability of obtaining

a set of vertices of that size and density of edges. The objective function for metagenes

does not depend on clinical outcomes, but only on the expression data.

26



Suppose we are given a metagene M with n genes. Regarding M as a directed graph,

let |E| be the number of arrow relations (edges) X → Y between genes (vertices) of M .

(Here X ≈ Y counts as two directed edges.) A complete directed graph on n vertices

would have n(n− 1) edges. Hence the edge density of M is given by

δ(M) =
|E|

n(n− 1)
.

The objective function should be increasing in both the size n of the metagene and its edge

density. A simple objective function with this property is

f(M) = n · |E|
n(n− 1)

=
|E|
n− 1

and this is what we used.

As with density, for any particular study one should try several values of conftol and

compare the results. Lowering conftol increases the sensitivity of the algorithm, and as

long as values of conftol below 0.5 are avoided, false discoveries are not an issue. A

typical real expression data matrix of size 20, 000× 100 with conftol = 0.7 will generate

150,000 to 200,000 arrows. The expected number of arrow relations in a random matrix of

the same size and density is 0.01. When there are more columns (samples), the expected

number of random arrows is less.

Now the LUST program is run on the expression matrix E for the type of cancer being

considered. The output consists of the following:

1. a list of the genes in each of the largest groups G1, . . . , Gm, where the default value

of m is 32,

2. a table giving the size of the groups |Gi| and their intersections |Gi ∩Gj|,

3. the value f(Gi) of the objective function on each group.

Next we form a pseudo-equivalence by settingGi ≡ Gj ifGi∩Gj is large. This is not
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a transitive relation. From each pseudo-equivalence class, choose a representative Gk that

maximizes the objective function f(G). These representatives Gk will be the metagenes

for this cancer. Figure 8 illustrates this process for a collection of 5 groups.

Currently, the metagenes are identified by inspection of the output. We obtain from 4

to 8 metagenes in this way for each type of cancer. These can be ranked according to their

values with the objective function f(G).

OVERLAP f(G)

G1 G2 G3 G4 G5

G1 340 230 220 0 1 7.7

G2 260 210 0 2 9.1

G3 250 0 0 8

G4 250 160 7.1

G5 180 7.5

Figure 8: Schematic output of the LUST algorithm. The overlaps show that group G1
contains 340 genes, G2 contains 260 genes, and their intersection G1 ∩ G2 contains 230
genes, etc. The overlaps indicate that groups G1, G2 and G3 represent the same biological
process or pathway; we would choose G2 as the representative metagene since it has the
highest score on the objective function f(G). Groups G4 and G5 are from a different
process; for this set of candidate metagenes we would choose G5 as the representative
based on its score.

Let us consider how one should interpret metagenes. Lists of the genes contained in

the metagenes found by the LUST algorithm are given on the LUST Github site.

A metagene is collection of genes acting in concert. The probability of this happen-

ing for a large number of samples without their being part of some common process (or

interacting pathways) is low, as evidenced by the false discovery rate. Moreover, these

genes are expressed differentially in the samples. Thus the metagene points to some fea-

ture or factor that varies in cancer patients. (It will not in general distinguish tumor from

normal.) This may reflect aggressiveness of the tumor, proliferation, patient response to

the disease, some factor unique to the organ in question (e.g., smooth muscle function

in stomach cancer, lipid metabolism in HCC, digestive function or insulin regulation in

pancreatic cancer), or possibly some differences not related to the disease.
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The significance of the metagene can be measured by the objective function f(M), or

how well the signatures obtained from the metagene separate the survival curves (or some

other clinical response). These are rather different measures, which are rather loosely

correlated. One purpose of signatures is to identify the patients that have the factor in

question, e.g., impaired immune response or metabolic dysfunction.

If signatures from the metagene separate the Kaplan-Meier survival curves, then there

is something there that needs to be understood. Caveat: None of our current analysis

addresses mutations or methylation or microRNA regulation of gene expression. These

factors are relevant and should be included in later studies. The LUST algorithm supports

multiple data types.

Sometimes a collection of genes that is a single group for some cancers can split

into two or more metagenes for others, with the parts being disjoint or nearly so. This is

particularly true for metagene A, related to immune regulation. Let us call those parts A1

, A2 and A3. When we look at the groups that are candidates for metagene A, several

options occur.

• Some groups are a mixture of A1, A2 and A3.

• Some groups contain A2 and A3 combined, but separate from A1.

• Sometimes all three parts form distinct groups.

Whether we regard this situation as one metagene with three parts, or three related and

slightly overlapping metagenes, is a matter of convenience.

In stomach cancer, there is a large combined A metagene, along with smaller split

versions of A1, A2, and A3. But for example, in colon, rectum, and some kidney cancerts,

A1 is barely present.

Metagene R for stomach cancer also splits into three parts. In this case, metagene R

does not exactly contain the smaller metagenes, but the overlap is too large to consider
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OVERLAP

A A1 A2 A3

A 172 68 100 8

A1 68 1 1

A2 100 2

A3 8

Figure 9: LUST output for the A metagene. The large metagene A contains 3 smaller
metagenes: A1, A2, A3 which barely overlap. This is an idealized version, compiled
from the output for many cancers, and these entries would be embedded (not necessarily
consecutively) in a much larger table of output.

OVERLAP

R R1 R2 R3

R 216 31 19 83

R1 45 12 3

R2 81 2

R3 87
OVERLAP

R R1 R2 R3

R 296 45 81 87

R1 45 12 3

R2 81 2

R3 87

Figure 10: LUST output for the R metagene from stomach cancer. The metagene R has a
large overlap with 3 smaller metagenes: R1, R2, R3 and some additional genes which are
in none of the smaller ones. The first table is as it actually appears in the stomach cancer
output; the second is an idealized version with R containing the parts R1, R2, R3. Again
these entries would be contained in a much larger table of output.
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them distinct. Figure 10 indicates how these metagenes appear in the LUST output. A

version of metagene R also occurs with esophageal cancer.

5.3 The D-basis algorithm

D-basis is a new algorithm described in Adaricheva and Nation (2017) that discovers the

rules S → d in a table with entries 0 and 1. Here S is a set of rows (genes) and d is another

row (say, a clinical parameter, or another gene). The rule S → d is found in the table, if

all entries of 1 for set S imply an entry of 1 in row d, for each column (patient) of the

matrix. In practice, the algorithm computes rules that hold in almost all columns, that is,

rules such that the probability of d = 1, when the entries in S are all 1, is above a given

threshold.

The support of a rule S → d is the number of columns, where all entries in rows S∪d

are 1. The D-basis provides flexibility of several parameters built into the testing, which

may affect the ranking of the genes with respect to the parameter of relevance. The top

genes were identified through testing with variation of the minimal support, which refers

to percentage of patients validating the rules connecting genes and survival/recurrence. In

our testing, we varied minimal support between 5% and 15% of patients in the testing set.

For a fixed row d and any other row x, one can compute the total support of all

rules S → d such that x is in S. This parameter shows the frequency that x appears

in implications targeting d. The algorithm can also compute a similar frequency of x,

when targeting ¬d, i.e., an additional row where all entries in d are switched. The ratio of

the two frequencies gives the relevance of row x to d. Thus, all rows of the table can be

ranked in their relevance to a fixed row d.

The D-basis can be applied to the entry table formed by metagenes found by LUST,

and choose d as a marker for the low-risk patients (longer survival), or high-risk patients,

or recurrence parameter, among many other options. It was used in ovarian cancer anal-

ysis in Adaricheva, Nation, et al. (2015). Additional functionality of the D-basis was
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developed in Segal et al. (2018).

We tested the algorithm on random tables of size and density equivalent to real data for

stomach cancer. In the process of finding the first signature above, the D-basis algorithm

produced 8041 implications S → d of support≥ 8 with |S| ≤ 4 from a 460×76 expression

matrix. The estimated probability of obtaining at least 8041 implications S → d of support

≥ 8 and |S| ≤ 4 in a 460 × 76 random binary table with the same density as our data is

1.64× 10−7. We conclude that the signature represents a real signal in the data, and not a

random artifact.

5.4 Mutual information

In general, given discrete random variables X and Y , the mutual information between X

and Y is

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)

where p(x, y) is the probability of the pair (x, y), and p(x), p(y) are the marginal proba-

bilities. The concept goes back to Shannon (1948); see Cover and Thomas (2006) for a

modern treatment. The mutual information measures (in bits) the reduction in the uncer-

tainty of X given that you know Y : in terms of the entropy H and conditional probability,

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

In our application, X is the discretized survival (0 for short survival, 1 for long survival)

and Y is the discretized e-score (0 if sj < θ, 1 if sj ≥ θ). The probabilities are deter-

mined emperically, by their frequencies. By adjusting θ, we can maximize the mutual

information between survival and the e-scores.
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6 Appendix II: Additional tables, figures and analysis

.

The pathway analysis reflected in Table 5 was done on patients diagnosed at stage 1

or 2. Table 7 gives the analysis for stages 1–4, which shows no significant differences.

Tables 8, 9, and 10 give the pathway analysis performed on metagenes R1, R2, and R3

using DAVID. The tables show the pathways identified, with other information including

the corrected p-value.

As indicated in the text, some of the genes in DU4 and DO4 have been specifically

indicated as factors in cancer by other studies. FLRT2 and TNXB were found with de-

creased gene expression in the long survival group. Decrease in FLRT2 gene expression

was found by Dai et al. (2019) to correlate with better survival in gastric cancer. In cervical

cancer, TNXB protein is involved in the activation of the PI3K pathway in the transition

of EMT (Yan et al. 2019). Other genes, including SFRP1 and SMYD1 were found with

higher gene expression in the long survival group. SFRP1 is a soluble inhibitor of the

WNT pathway and is frequently found with promoter methylation in cancer cells (S. Li

et al. 2018). We propose that overexpression of SFRP1 would act in an autocrine and

paracrine manner decreasing cell proliferation.

We tested the signatures DU4 and DO4 on the GEO (Gene Expression Omnibus)

dataset GSE84433 (Yoon et al. 2020) consisting of 357 stomach adenocarcinoma patients.

This dataset is somewhat different from the TCGA data, including (1) there is no staging

in the clinical data, and (2) a different Illumina array was used, with multiple probes for

some genes. So we used all the samples, not trying to separate out the early stage cases,

and initially used all the probes from the signatures. It turned out that using only some of

the probes from a signature gave better predictions.

More significantly, the mean expected survival time for the GEO cohort, based on the

ecdf, is 3450 days, compared to 842 days for the TCGA cohort. Whatever the reasons for

this disparity, the results should be interpreted with some caution. This discrepancy also
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makes it impractical to use accuracy as a measure of a signature’s prognostic effectiveness,

as it is not clear what constitutes a long survival time.

On the GSE84433 data, the DU4 signature was not very predictive of survival, with a

p-score of just p = 0.064 on the log-rank test. However, if we use only 2 probes from the

signature, 1 for TNXB and 1 for FLRT2, we get p = 0.0049. The entire DO4 signature

performed noticeably better, with p = 0.00093. The Kaplan-Meier curves for DO4 on the

GEO dataset are shown in Figure 11. Using only 3 probes from the DO4 signature, 2 for

ASB5 and 1 for SMYD1, this improves to p = 0.00052.
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Figure 11: Kaplan-Meier survival curves for the 4-gene signature DO4 on the GEO dataset
GSE84433.
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7 Appendix III: The genes in metagenes A and R

Recall that the LUST algorithm identifies metagenes as sets of genes that tend to over-

express on the same patients, and to under-express on the same patients. The assumption

is that this signal in the expression data means that these genes are part of some common

biological process, which may or may not be related to the disease. Our concern, of course,

is to find metagenes that are related to disease progression. For stomach cancer, this is the

A and R metagenes, which are listed below.

We should mention that the metagenes found by LUST for esophageal cancer were

somewhat different (Nation et al. 2017), except for a small version of R3, and our signa-

tures do not predict survival for esophageal cancer very well. This distinction is similar to

that found for hepatocellular carcinoma and cholangiocarcinoma for liver cancer (Nation

et al. 2017).

The algorithm allows one metagene to be contained in another. This can be interpreted

to mean that the submetagene represents a more tightly connected cluster within the larger

one. Of particular interest is the case when a large metagene (with a few hundred genes)

splits into parts that are disjoint or nearly disjoint. Both the A and R metagenes split into

3 parts.

Metagene A, consisting of genes related to immune response, splits into A1, A2, and

A3 in almost every type of cancer, including stomach cancer.

A1: ACAP1, ARHGAP9, BTLA, CCL5, CCR5, CD247, CD27, CD2, CD3D, CD3E,

CD3G, CD48, CD52, CD5, CD6, CD74, CD8A, CD8B, CD96, CRTAM, CTSW, CXCR3,

CXCR6, FASLG, GPR171, GRAP2, GZMA, GZMH, GZMK, ICOS, IL12RB1, IL21R,

IL2RB, IL2RG, ITGAL, ITK, KIAA0748, KLRK1, LCK, LTA, MAP4K1, NKG7, P2RY10,

PDCD1, PRF1, PTPN7, PTPRCAP, PYHIN1, RASAL3, SASH3, SCML4, SEPT1, SH2D1A,

SIRPG, SIT1, SLA2, SLAMF1, SLAMF6, SPN, TBC1D10C, TBX21, THEMIS, TIGIT,

TRAF3IP3, TRAT1, UBASH3A, ZAP70, ZNF831.

A2: AIF1, AOAH, ARHGAP30, ARHGAP9, BIN2, BTK, C17orf87, C1QA, C1QB,
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C1QC, C1orf162, C3AR1, CD14, CD163, CD300A, CD300C, CD300LF, CD33, CD37,

CD4, CD53, CD74, CD86, CLEC4A, CORO1A, CSF1R, CSF2RB, CYBB, CYTH4,

DOCK2, DOCK8, DOK2, EVI2B, FCER1G, FCGR1A, FCGR1B, FCGR1C, FCGR3A,

FERMT3, FGD2, FPR3, FYB, GIMAP1, GIMAP4, GPR65, GPSM3, HAVCR2, HCK,

HCST, HK3, HLA-DMB, IGSF6, IKZF1, IL10RA, IRF8, ITGAM, ITGB2, KLHL6,

LAIR1, LAPTM5, LCP2, LILRB1, LILRB2, LILRB4, LRRC25, LST1, LY86, MNDA,

MPEG1, MRC1, MS4A4A, MS4A6A, MS4A7, MSR1, MYO1F, NCF2, NCKAP1L,

PIK3AP1, PILRA, PLEK, PSTPIP1, PTPRC, RNASE6, SASH3, SELPLG, SIGLEC1,

SIGLEC7, SIGLEC9, SLAMF8, SLA, SLC7A7, SLCO2B1, SPI1, TBXAS1, TFEC, TLR8,

TNFAIP8L2, TYROBP, VSIG4, WAS.

A3: CD74, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-

DRA, HLA-DRB1

Metagene R, which is unique to stomach cancer, also contains 3 nearly disjoint parts

(though R1 and R2 do have 12 genes in common). The R3 submetagene is also found in

esophageal cancer.

R1: AKT3, ASAM, BNC2, C10orf72, CALD1, CDH11, CRISPLD2, DCN, DDR2,

ECM2, EDNRA, FBN1, FBXL7, FGFR1, FSTL1, GLI3, GLT8D2, GPC6, GUCY1A3,

GUCY1B3, JAM3, LAMA4, LHFP, MAP1A, MPDZ, MSRB3, NAP1L3, NDN, OLFML1,

PDGFRB, PDLIM3, RECK, RUNX1T1, SDC2, SGCD, SSC5D, STON1, SYDE1, TCF4,

TSHZ3, VGLL3, ZCCHC24, ZFPM2, ZNF423, ZNF521.

R2: ADAMTS12, ADAMTS2, AEBP1, ANTXR1, BGN, BICC1, BNC2, C10orf72,

C1S, CCDC80, CCDC8, CDH11, COL10A1, COL12A1, COL1A1, COL1A2, COL3A1,

COL5A1, COL5A2, COL6A1, COL6A2, COL6A3, COL8A1, COL8A2, CPZ, CSDC2,

CTSK, DCN, DDR2, EFEMP2, EMILIN1, FAM180A, FAP, FBLN2, FBN1, FIBIN, FNDC1,

FRMD6, FSTL1, GFPT2, GGT5, GLT8D2, GNB4, GPC6, GREM1, HMCN1, ISLR,

ITGA11, ITGBL1, LAMA2, LUM, MFAP5, MMP2, MXRA8, NAP1L3, OLFML2B,

PCOLCE, PLXDC2, PODN, PRKD1, PRRX1, PTGER3, RAB31, RSPO3, SCARF2,
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SERPINF1, SFRP2, SFRP4, SPARC, SPOCK1, SSC5D, SULF1, THBS1, THBS2, THY1,

TIMP2, TIMP3, TMEM119, VCAN, VGLL3, ZEB2.

R3: ACTA2, ACTG2, ADAM33, ADCY5, ANGPTL1, ANK2, AOC3, ASB5, ATP1A2,

BOC, C20orf200, C2orf40, C7, CALD1, CASQ2, CCDC80, CDH19, CHRDL1, CHRDL2,

CHRM2, CNN1, CPXM2, DES, FAM19A4, FGF7, FHL1, FLNC, GNAO1, GRIK5,

HAND2, HSPB6, HSPB7, HSPB8, IGF1, INMT, JPH2, KCNB1, KCNMA1, KCNMB1,

KIAA0408, KIAA2022, LDB3, LMO3, LMOD1, LOC399959, LOC728264, MAMDC2,

MGP, MRGPRF, MSRB3, MYH11, MYL9, MYLK, MYOCD, MYOC, NBLA00301,

NEXN, NFASC, NGFR, NRXN1, NXPH3, OGN, PCDH10, PGM5, PLIN4, PLN, PLP1,

PRELP, PRUNE2, RBPMS2, RGMA, SCN7A, SCRG1, SFRP1, SLITRK5, SMYD1,

SOX10, SPARCL1, SSC5D, SYNC, SYNM, SYNPO2, TAGLN, TCEAL2, THBS4, TMEM35,

TNS1.

However, the genes in R1, R2, and R3 do not exhaust all of metagene R. There are

many genes in metagene R that do not show up in one of the parts, and in fact some of

these are in our signatures: ABCA8, ABCC9, ABI3BP, ANGPTL2, ASPN, ATP8B2,

BARX1, BHMT2, C14orf132, C6orf186, C7orf58, C9orf4, CADM3, CCL19, CDO1,

CILP, CLIP3, COL14A1, CRTAC1, CRYAB, CYBRD1, CYP1B1, DAAM2, DACT3,

DCLK1, DLG2, DNAJB5, DPYSL3, DZIP1, EFEMP1, EFS, EML1, EPHA7, FAM107A,

FERMT2, FILIP1, FLNA, FLRT2, FOXP2, FXYD6, GEFT, GHR, GPRASP1, JAM2,

KANK2, LDOC1, LGI2, LIMS2, LOC572558, MAP1B, MAP6, MAPK10, MEF2C,

MEOX2, MN1, MOXD1, MRVI1, MXRA8, NDN, NEGR1, NRK, OMD, PDE1A, PDE3A,

PDZD4, PDZRN4, PEG3, PLXNA4, PODN, PPP1R12B, PRICKLE2, PTGIS, PYGM,

RCAN2, RGMA, RNF150, SCN2B, SDPR, SETBP1, SGCA, SLIT2, SLIT3, SMOC2,

SORBS1, SVEP1, SYNE1, SYT11, TACR2, TGFB1I1, TMEM47, TMTC1, TNXB, TPM2,

TSPAN2, VIPR2, ZCCHC24, ZDHHC15, ZEB1, ZFHX4.

Because metagene A occurs with every type of cancer, we can refine the splitting into

submetagenes by comparing multiple data sets. Metagene R is a major signal in only

37



stomach cancer, with R3 also found with esophageal cancer. This leaves the splitting into

submetagenes somewhat more coarse than the splitting for metagene A.
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Table 7: Analysis on all 4 stages

Term Count % P-Value Benjamini

Pathways in cancer 7 15.6 1.60E-04 1.50E-02

Vascular smooth muscle contraction 4 8.9 2.30E-03 1.00E-01

cGMP-PKG signaling pathway 4 8.9 5.30E-03 1.50E-01

Central carbon metabolism in cancer 3 6.7 9.40E-03 2.00E-01

Renin secretion 3 6.7 9.40E-03 2.00E-01

Proteoglycans in cancer 4 8.9 1.00E-02 1.80E-01

Melanoma 3 6.7 1.10E-02 1.70E-01

Gap junction 3 6.7 1.70E-02 2.10E-01

Prostate cancer 3 6.7 1.70E-02 2.10E-01

Platelet activation 3 6.7 3.60E-02 3.50E-01

PI3K-Akt signaling pathway 4 8.9 4.30E-02 3.70E-01

cAMP signaling pathway 3 6.7 7.60E-02 5.20E-01

Focal adhesion 3 6.7 8.10E-02 5.20E-01

Rap1 signaling pathway 3 6.7 8.40E-02 5.00E-01

Ras signaling pathway 3 6.7 9.50E-02 5.20E-01

Table 8: R1 Pathway analysis using DAVID

Term Count % P-Value Benjamini

ECM-receptor interaction 12 14.8 4.80E-14 2.90E-12

Protein digestion and absorption 10 12.3 9.70E-11 3.00E-09

Focal adhesion 12 14.8 6.70E-10 1.40E-08

PI3K-Akt signaling pathway 13 16 1.20E-08 1.90E-07

Amoebiasis 6 7.4 9.80E-05 1.20E-03

Platelet activation 5 6.2 2.60E-03 2.60E-02

Proteoglycans in cancer 5 6.2 1.20E-02 9.80E-02

Table 9: R2 Pathway analysis using DAVID
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Term  Count % P-Value Benjamini

Vascular smooth muscle contraction 9 10.3 6.18E-08 2.59E-06

Focal adhesion 5 5.7 5.48E-04 1.15E-02

Regulation of actin cytoskeleton 4 4.6 4.45E-03 6.06E-02

Dilated cardiomyopathy 4 4.6 4.45E-03 6.06E-02

Calcium signaling pathway 3 3.4 3.28E-02 2.95E-01

Table 10: R3 Pathway analysis using DAVID
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