Problem 1

Using the definition of the derivative as a limit, find f'(x) when $f(x) = \frac{1}{x^2 - 1}$. (you may not use the chain rule, or the power rule... or the quotient rule)

Problem 2

Using the definition of the derivative as a limit, find f'(x) when $f(x) = \sqrt{x^2 + 1}$. (you may not use the chain rule, or the power rule... or quotient rule)

Problem 3

Let $f(x) = 2x^3 - \frac{1}{x^2} + \frac{3}{\sqrt[3]{x}}$. Find f'(x) using whatever method you want.

Problem 4

Find $\frac{d}{dx}\left((3x^2+4x+5)(6x^3+6x^2+8x+9)\right)$ using whatever method you want.

Problem 5 Find $\frac{d}{dx}\left(\frac{x^2+\frac{1}{x}}{\sqrt[3]{x}+2x+2}\right)$ using whatever method you want.

Problem 6

Find the x-coordinates where $f(x) = x^3 + 2x^2 + x + 1$ has horizontal tangent lines.