/ 15 points

Worksheet 4

Name:

Section: 5 6 (circle one)

1. Use the intermediate value theorem to show that the equation $x^3 + 2x + 1 = 0$ has a solution in the interval [-1, 0].

2. Find a value of b so that the function

$$f(x) = \begin{cases} x - b & x < 1\\ bx^2 + 2 & x \ge 1 \end{cases}$$

is continuous on $(-\infty, \infty)$.

3. Using the definition of the derivative as a limit, find f'(x) when $f(x) = \frac{1}{x^2 + 1}$.

4. let
$$h(x) = 3x^2 + 3\sqrt{x} + \frac{1}{\sqrt[3]{x}}$$
, find $h'(x)$.

5. Find
$$\frac{d}{dx} \left((\sin(x))(5x^{2/3} + 7x^{1/7} + 15) \right).$$

6. Find
$$\frac{d}{dt}\left(\frac{8\cos(t)+2t}{7t^2+2t}\right)$$

7. Let
$$g(x) = \frac{3\cos(x) + x^2\sin(x)}{4x^2 + 1}$$
, find $\frac{dg}{dx}$.

8. Let
$$W(x) = \left(\frac{\sin(x)}{x} + \sqrt{x} + 1\right) \left(x^3 + x^2 + x + 1\right)$$
. Find $W'(x)$.