Math 243
Spring 2019
Final
Please Study
Time Limit: 120 minutes
No Notes
No Calculators
No Funny Business
No Fuñ Bus
\qquad

Problem	Points	Score
1	20	
2	25	
3	15	
4	10	
5	10	
6	10	
7	20	
8	40	
9	20	
10	20	
11	10	
12	20	
13	20	
14	15	
15	15	
Total:	270	

1. (a) (20 points) Sketch a graph of the following:

$$
\begin{aligned}
& z=x^{2}+y^{2} \\
& x=y^{2}+z^{2} \\
& z=x^{2}-y^{2}
\end{aligned}
$$

$$
9=x^{2}+y^{2}+z^{2}
$$

$$
1=\frac{z^{2}}{9}+x^{2}+y^{2}
$$

$$
z^{2}=x^{2}+y^{2}
$$

$$
x^{2}=z^{2}+y^{2}
$$

$$
z^{2}=x^{2}+y^{2}+1
$$

$$
z^{2}=x^{2}+y^{2}-1
$$

2. Let $P=(1,2,0), Q=(1,1,3)$ and $R=(0,0,1)$.
(a) (5 points) Find the angle between \vec{P} and \vec{Q}.
(b) (5 points) Parametrize the the line segment from P to Q.
(c) (5 points) Give an equation of the plane containing P, Q and R.
(d) (5 points) Give the area of the triangle whose vertices are P, Q and R.
(e) (5 points) Give an equation of a sphere whose surface contains the points P, Q and R.
3. Consider the parametric equations

$$
x=\cos (2 t) \quad \text { and } \quad y=2 t+\sin (2 t) \quad \text { for } 0 \leq t \leq \pi .
$$

(a) (10 points) Find the length of this curve.
(b) (5 points) Find the equation of the tangent line when $t=\frac{\pi}{4}$.
4. (a) (5 points) Find $\lim _{(x, y) \rightarrow(4,3)} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$ if it exists.
(b) (5 points) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y}$ if it exists.
5. (10 points) For differentiable vector valued functions $u(t)$ and $v(t)$, prove that $\frac{d}{d t}(u(t) \cdot v(t))=$ $\frac{d u}{d t} \cdot v(t)+u(t) \cdot \frac{d v}{d t}$
6. (10 points) Show that if $r(t)$ is a differentiable vector valued function and $|r(t)|=C$ for a constant C, then $r(t)$ and $\frac{d r}{d t}$ are orthogonal.
7. (20 points) Find $r(t)$ if

$$
\frac{d^{2} r}{d t^{2}}=i+j-32 k,\left.\quad \frac{d r}{d t}\right|_{t=0}=8 i+8 j \quad \text { and } \quad r(0)=2 i+j+k
$$

8. (40 points) Let

$$
r(t)=\cos ^{3}(t) i+\sin ^{3}(t) j
$$

Find the unit tangent vector, T, the principle unit normal vector, N, the curvature, κ, the unit binormal, B, and the torsion, τ, of this curve.
9. (20 points) Let $f(x, y, z)=\frac{z^{2} e^{z x y}}{x}$. Find f_{x}, f_{y}, f_{z} and $f_{x y z}$.
10. (20 points) a) Suppose that $r(t)=g(t) i+h(t) j$ is a vector valued function such that $f(g(t), h(t))=c$ for some constant c. Show that ∇f and $\frac{d r}{d t}$ are orthogonal along this level curve.
11. (a) (5 points) Let $f(x, y)=x^{2}-y^{2}+3$. Find on equation of the tangent plane at the point $(4,4,3)$.
(b) (5 points) Let $f(x, y, z)=2 x^{3}+4 y^{2}-z^{2}$. Verify that the point $(1,1,1)$ is on the level surface $f=5$, then find an equation of the tangent plane at that point.
12. Let $f(x, y)=\frac{1}{\sqrt{1-x^{2}-y^{2}}}$.
(a) (5 points) Find the domain and range of $f(x, y)$.
(b) (5 points) Is the domain open/closed or neither? What is the boundary of the domain? Is the domain bounded or unbounded?
(c) (5 points) Graph the level curve $f(x, y)=8$. Determine if $\left(\frac{3}{2 \sqrt{2}}, \frac{3}{2 \sqrt{2}}\right)$ is on this level curve. If it is, plot ∇f on the level curve at this point.
(d) (5 points) Find find a c such that the level curve $f(x, y)=c$ contains the point $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$.
13. (a) (20 points) Let $f(x, y)=8 x^{3}+y^{3}+6 x y$. Use the second derivative test to find any local $\mathrm{min} / \mathrm{max}$ or saddle points. You do not need to evaluate $f(x, y)$ at these points.
14. (15 points) Find the cubic (degree 3) approximation for the function

$$
f(x, y)=e^{2 x} \ln (1+3 y)
$$

centered at the origin.
15. (15 points) There will be a "Lagrange" type question similar to ones found on the homework or worksheet. Here is one I took from the book:
Suppose that the temperature (in degrees Celsius) on the sphere $x^{2}+y^{2}+z^{2}=1$ is given by the function $T(x, y, z)=x y z^{2}$. Find the hottest and coldest points on the sphere. Would water freeze at any point on the sphere?

