243 Section 2 - HW 21 - Due: 4/1

Name:

Score:

/10

Problem 1

Let $f(x, y, z) = 2x^2 + y^2 - 3z^2$. Show that (1, 1, 1) is on the level surface f(x, y, z) = 0. Find an equation of the tangent plane to the level surface f(x, y, z) = 0 at the point (1, 1, 1). Give parametric equations of the normal line to the surface at this point.

Problem 2

Let $f(x,y) = e^{xy}x^2 + y^2$. Determine an equation of the tangent plane on the surface z = f(x,y) when (x,y) = (1,1). Give an equation of the normal line to the surface at this point.

Problem 3

Find an equation for the plane that is tangent to the surface $z=e^{x^2+y^2}+2xy-x^2-y^2$ at the point $(1,1,e^2)$.

Problem 4

Consider the surfaces $x^3 - xyz + y^3 = 1$ and $x^2 + y^2 + z^2 = 3$. Find parametric equations for the line which is tangent to the curve of intersection at the point (1, 1, 1).

Problem 5

Let f and g be functions of 2 variables. Show that

$$\nabla(fg) = g\nabla f + f\nabla g$$
 and $\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$.