Math 243	
Spring 2019	
${\bf Practice}~{\bf Exam}$	2
Doomsday	

Name (Print):

Time Limit: Probably Enough

Points	Score
10	
10	
10	
10	
10	
35	
60	
145	
	10 10 10 10 10 35 60

1. (10 points) For differentiable vector valued functions u(t) and v(t), prove that $\frac{d}{dt} \left(u(t) \cdot v(t) \right) = \frac{du}{dt} \cdot v(t) + u(t) \cdot \frac{dv}{dt}$

2. (10 points) Show that if r(t) is a differentiable vector valued function and |r(t)| = C for a constant C, then r(t) and $\frac{dr}{dt}$ are orthogonal.

3. (10 points) Find r(t) if

$$\frac{d^2r}{dt^2} = -32k$$
, $r(0) = 100k$, $\frac{dr}{dt}\Big|_{t=0} = 8 \ i + 8 \ j$

4. (10 points) Let $r(t) = t\sin(t^2) i + \frac{1}{1+t^2} j + t\sin(t) k$. Find $\int r(t)dt$.

5. (10 points) With r(t) from the previous problem, find $\int_0^{\sqrt{\pi}} r(t) dt$.

- 6. Let $r(t) = t\cos(t) i + t\sin(t) j + \frac{2\sqrt{2}}{3}t^{3/2} k$.
 - (a) (10 points) In a few words or a sketch, describe this curve for $t \ge 0$.

(b) (10 points) Find the parametric equations of the tangent line to the curve when $t = \frac{\pi}{3}$.

(c) (15 points) Find the length of the curve from t = 0 to $t = \pi$.

7. (60 points) For numbers $a,b \geq 0$, let

$$r(t) = a\cos(t) \ i + a\sin(t) \ j + bt \ k.$$

Find the unit tangent vector, T, the principle unit normal vector, N, the curvature, κ , the unit binormal, B, and the torsion, τ , of this curve. Give the equation of the osculating plane at t=0.