Let $f(x, y, z) = \sin(xy) + e^y$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Problem 2

Let $f(x,y) = \sec(xye^y) + e^{\cos(x^2+y^2)}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Problem 3

Let $f(x,y) = \sqrt{xy^2 + e^{xy}}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

For the function from problem 1, verify that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

Problem 5 Find $\frac{\partial^2}{\partial x \partial y} \Big(y e^{xy} + \tan(y^2 \cos(y)) \Big).$

Let $f(x,y) = x^2 \sin(xy) + e^{xy}$. Find $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$.

Recall the three-dimensional Laplace equation:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

Show that the functions

$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

and

$$g(x, y, z) = e^{3x + 4y} \cos(5z)$$

are both solutions to the Laplace equation.