Find the derivative of $f(x, y) = x^2 + 3xy + y^2$ in the direction of v = 2i + j.

Problem 2

Define $f(x, y) = x^2 - y^2$. Sketch the level curve containing the point (0, 1). Compute ∇f . Plot the tangent line and ∇f on the level curve at this point.

Let $f(x,y) = x^2y + e^{xy}\sin(y)$. At the point (1,0), in what direction does f increase most rapidly? Find the derivative of f in this direction.

/30

Problem 4

Let $f(x,y) = \ln(x^2 + y^2 - 1) + y + 6z$. At the point (1,1,0), find the direction in which f increases mostly rapidly. Then find the derivative of f in that direction.

Let $f(x,y) = xy + y^2$. Find a direction, u, such that $(D_u f)|_{(3,2)} = 0$. In what direction does f decrease most rapidly? Find the derivative of f in this direction.

Let $f(x, y, z) = 2x^2 + y^2 - 3z^2$. Show that (1, 1, 1) is on the level surface f(x, y, z) = 0. Find an equation of the tangent plane to the level surface f(x, y, z) = 0 at the point (1, 1, 1). Give parametric equations of the normal line to the surface at this point.

/30

Problem 7

Let $f(x,y) = e^{xy}x^2 + y^2$. Determine an equation of the tangent plane on the surface z = f(x,y) when (x,y) = (1,1). Give an equation of the normal line to the surface at this point.

Name:	Score:	/30	243 - Section 4 - HW 17 - Due: $4/2$

Find an equation for the plane that is tangent to the surface $z = e^{x^2+y^2} + 2xy - x^2 - y^2$ at the point $(1, 1, e^2)$.

Problem 9

Consider the surfaces $x^3 - xyz + y^3 = 1$ and $x^2 + y^2 + z^2 = 3$. Find parametric equations for the line which is tangent to the curve of intersection at the point (1, 1, 1).

/30

Problem 10

Let f and g be functions of 2 variables. Show that

$$abla(fg) = g \nabla f + f \nabla g$$
 and $abla \left(\frac{f}{g} \right) = \frac{g \nabla f - f \nabla g}{g^2}.$