Problem 1

Graph the curve $r=1+\cos(\theta)$. Then, give the equation of the tangent line (in the usual Cartesian coordinates) at the point $(r,\theta)=(\frac{3}{2},\frac{\pi}{3})$. Graph the tangent line on the graph of the curve.

Problem 2

Graph the curves $r = 1 + 2\cos(\theta)$ and $r = \sin(2\theta)$ (separately).

Problem 3

Find the area between the curves $r = 3 - \cos(\theta)$ and $r = 1 - \cos(\theta)$ from $0 \le \theta \le 2\pi$.

Problem 4

(Hint:
$$\frac{1 + \cos(2\theta)}{2} = \cos^2(\theta)$$
)

Find the length of the cardioid $r=1+\cos(\theta)$. (Hint: $\frac{1+\cos(2\theta)}{2}=\cos^2(\theta)$) (Another Hint: By symmetry, you can get away with integrating from 0 to π and multiplying your answer by 2. This makes dealing with the absolute value easier.)