Name:

Section: 2 4 (circle one)

- 1. Consider the function $f(x,y) = \sqrt{1-x^2-y^2}$
 - a) Sketch a graph of this function and plot the point $(\frac{1}{2}, \frac{1}{2}, f(\frac{1}{2}, \frac{1}{2}))$.

$$f(\frac{1}{2},\frac{1}{2}) = \sqrt{1-\frac{1}{11}-\frac{1}{11}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$$
This point is $(\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}})$

b) Find ∇f . Plot the level curve of f containing the point $(\frac{1}{2}, \frac{1}{2})$ and plot the vector $(\nabla f)_{(\frac{1}{2}, \frac{1}{2})}$

c) Find the derivative of
$$f$$
 in the direction $u = 2i + 3j$ at the point $(0, \frac{1}{\sqrt{2}})$ Note:
$$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ \\ \end{array} \end{array} \right) = \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ \\ \end{array} \end{array} \right) = \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ \\ \end{array} \right) = \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} \end{array} \right) = \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \right) = \begin{array}{c} 1 \\ \end{array}$$

d) Find the direction in which f is increasing most rapidly. Find the derivative of f in this

d) Find the direction in which
$$f$$
 is increasing most rapidly. Find the derivative of f in this direction.

In general, $\nabla f = \nabla f = \sqrt{f}$

As we know, ∇f points $= |\nabla f|$

In the direction f increases most $= \sqrt{\frac{1}{1-\chi^2-y^2}} + \frac{1}{1-\chi^2-y^2} = \sqrt{\frac{\chi^2+y^2}{1-\chi^2-y^2}}$

e) Find the equation of the tangent plane to the surface at $(\frac{1}{2} + f(\frac{1}{2} + 1))$

e) Find the equation of the tangent plane to the surface at $(\frac{1}{2}, \frac{1}{2}, f(\frac{1}{2}, \frac{1}{2}))$

$$(\nabla^2)_{(\frac{1}{2},\frac{1}{2})} = \frac{1}{\sqrt{2}} \cdot \frac$$

f) Find the equations of the normal line to the plane at this point.

- 2. Consider the function f(x, y, z) = xy + xz + zy + xyz.
 - a) Show that the point (1, 1, 1) is on the level surface 4 = f(x, y, z).

Since
$$f(1,1,1) = 1 + 1 + 1 + 1 = 4$$
, $(1,1,1)$ is on Sard surface.

b) Find the equation of the tangent plane to the level surface at this point.

$$(7f)_{(1,1,1)} = 3i + 3j + 3k \approx 3(x-1) + 3(y-1) + 3(z-1) = 0$$
is the equation of the tangent plane.

c) Find the equation of the normal line at this point.

$$\chi = 1+3t$$
, $\chi = 1+3t$, $\chi = 1+3t$

3. Consider the curve given by the intersection of the surfaces

$$14 = x^2 + y^2 + z^2$$
 and $0 = x^2 - y^2 - z$.

a) Show that
$$(2,1,3)$$
 is in the intersection of both the surfaces.
Since $14 = 2^2 + 1^2 + 3^2$ and $0 = 2^2 - 1^2 - 3$
 $(2,1,3)$ is in the intersection of both the surfaces.

b) Give the equation of the tangent line to the curve of intersection at the point (2, 1, 3).

let
$$f(xyz) = x^2 + y^2 + z^2 - 14$$
 and $g(xyz) = x^2 - y^2 - z^2$
 $\forall f = 2 \times i + 2yz + 2z$

$$(\forall f \times \forall g)_{(2,1,3)} = \begin{vmatrix} i & j & k \\ 4 & 2 & 4 \\ 4 & -2 & -1 \end{vmatrix} = (6.48)i - (-4 - 24)j + (-88)k$$

$$= 10i - 28j - 16k$$