Math 242 Final

Name: _____

Please c	circle	your	section:
----------	--------	------	----------

Recitation 1	Thurs 12-12:50	TA - Dan Flores
Recitation 2	Thurs 1:30-2:20	TA - Dan Flores
Recitation 3	Tues 9-9:50	TA - Vince Chung
Recitation 4	Tues 12-12:50	TA - Vince Chung
Recitation 5	Wed 9:30-10:20	TA - Lance Ferrer
Recitation 6	Wed 12:30-1:20	TA - Lance Ferrer
Recitation 7	Fri 10:30-11:20	TA - Ikenna Nometa
Recitation 8	Fri 12:30-1:20	TA - Ikenna Nometa
Recitation 9	Fri 9:30-10:20	TA - Dan Flores

Question	Points	Score
1	12	
2	10	
3	12	
4	10	
5	13	
6	12	
7	15	
8	15	
9	13	
10	6	
11	17	
12	10	
13	5	
Total:	150	

- You may not use notes or calculators on the test.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work and make clear what your final solution is (e.g. by drawing a box around it).
- The last two pages are a formula sheet. You are welcome to remove this from the exam.
- Good luck!

1. Find the derivative of each of the following functions.

(a) (5 points) $f(x) = 2\sin^{-1}(x^2)$

(b) (7 points) $g(x) = 2^{x + \ln(x)}$

2. (10 points) Evaluate the following integral: $\int x \sec^2 x \, dx$

3. Evaluate the following integrals. $c\pi/6$

(a) (7 points)
$$\int_0^{\pi/6} \cos^3(3x) \sin^2(3x) dx$$

(b) (5 points)
$$\int \frac{e^x}{e^x + 1} dx$$

4. (10 points) Evaluate the following integral. (Hint: Use trigonometric substitution.)

$$\int \frac{dx}{(9-x^2)^{3/2}}$$

5. Determine whether the following improper integrals converge or diverge, and evaluate those that converge.

(a) (5 points)
$$\int_{1}^{3} \frac{2}{\sqrt{x-1}} dx$$

(b) (5 points)
$$\int_3^\infty \frac{2}{\sqrt{x-1}} dx$$

(c) (3 points) What does your answer to (b) tell you about the series $\sum_{n=3}^{\infty} \frac{2}{\sqrt{n-1}}$?

6. Evaluate the following limits. If a limit does not exist write DOES NOT EXIST.

(a) (4 points)
$$\lim_{n \to \infty} (-1)^n \frac{n}{n+1}$$

(b) (4 points)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{3}\right)^{k}$$

(c) (4 points)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$$

7. For each of the following series decide if it converges or diverges and explain why.

(a) (5 points)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

(b) (5 points)
$$\sum_{n=1}^{\infty} \frac{2^n}{n \cdot n!}$$

(c) (5 points)
$$\sum_{n=3}^{\infty} (-1)^n \frac{\ln(n)}{n}$$

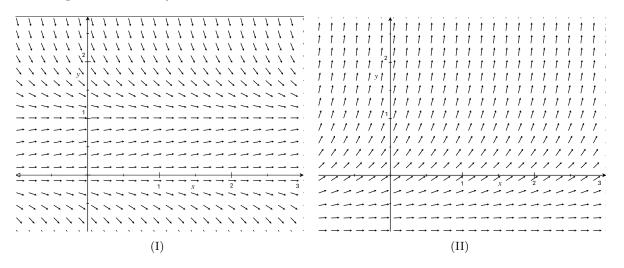
1 1		V	V					-1+2	11				1	1	1	1	11	11	1
1 1	- V	Y	1	\mathbf{N}	\mathbf{N}			-	H	-	1	/	/	1	/	1	ľ	1	+
11	-\	Ŷ	X	\mathbf{N}	\mathbf{N}	\mathbf{i}		7.8	Þ	-+	-	~	/	1	/	1	1	1	2
1 1	Ì	V	V	\mathbf{N}	\mathbf{N}	\mathbf{N}		\mathbf{N}	h		-	-+	-	1	-^	-	1	1	1
11	Ì	Ţ	Ń	X	\mathbf{x}	1		×	Ν	-	-	+		+				-	-
1 1	1	1	1	N	1	1		0.4	K		7	1						·•	-
i i	Ì	ì	Ň	Ń	Ń	N	\mathbf{k}	\mathbf{N}	K	\mathbf{N}	~	`	`	-					• -
	1	1.1	1																
51 I	-15	Ţ	1	-1	V	-50	5 🔪	No	Ν		8	5	~	1	-	-	5	-	⇒
1 1 51 1	-\.5	1	7	-1 \ \	X	-70 -70	5 \	10	N		1	2	x \		1		.5		· *: . `
$\frac{1}{1}$	ţ	7 7 7	1	-1	1	1	_\		k			2	x.	1	1 1		5 / /	++	
	ţ	۰ ۱	/ / /	N	1	1	1		k			2	x.	1		1- / / / / /	5 / / /	`	
	ţ	۰ ۱		N	1	1	1	\ \				2	x 🔨		\ \ \		5	`	
1 1	ţ	1	1 1	1	1			\ \					× \ \ \				5	`	
1 1	ţ	1 1 1	1	7 7 7	7 7 7			1 10.2							/ / / / / / / / / / / / / / / / / / /		5	`	

8. Consider the differential equation $y' = y - e^{-x}$, with slope field pictured below.

- (a) (4 points) Sketch (on the slope field) the solutions satisfying y(0) = 0 and y(0) = 1.
- (b) (7 points) Find the general solution of the differential equation.

(c) (4 points) Find the particular solution satisfying y(0) = 0.

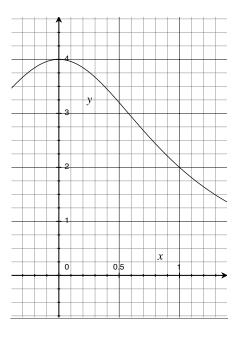
- 9. Consider the differential equation: y' = y(1 y).
 - (a) (4 points) Which of the following plots represents the direction field of this differential equation? Circle your answer.



(b) (2 points) If y is the solution satisfying y(0) = 2, what is $\lim_{x \to \infty} y$? (Hint: You can read this directly off the slope field.)

(c) (7 points) Solve the differential equation.

- 10. In this problem, you will use numerical integration to estimate $\pi = \int_0^1 \frac{4 \, dx}{1 + x^2}$.
 - (a) (2 points) The graph the function $y = 4/(1 + x^2)$ between x = 0 and x = 1 is shown below. On the graph draw, and shade in, the trapezoids whose area is computed by the Trapezoidal Rule with n = 2.



(b) (4 points) Use the Trapezoidal Rule with n = 2 to estimate the integral $\int_0^1 \frac{4 dx}{1 + x^2}$. Your answer should be a fraction (or decimal number).

- 11. Consider the power series: $\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n \cdot 2^n}$
 - (a) (13 points) Find its interval of convergence. (Hint: Check the endpoints.)

- (b) (2 points) What is its radius of convergence?
- (c) (2 points) For which values of x does the series converge absolutely?

- 12. Consider the function $f(x) = x \cos(3x)$.
 - (a) (5 points) Write down the Taylor series for f(x) based at a = 0. (Hint: Manipulate a 'famous Maclaurin series' do not calculate derivatives.)

(b) (5 points) Use your result in (a) to find $f^{(5)}(0)$ (the fifth derivative of f).

13. (5 points) The degree 3 Taylor polynomial centered at a = 0 for the function $\sin(x/2)$ is

$$\sin(x/2) \approx \frac{x}{2} - \frac{x^3}{8 \cdot 3!}.$$
 (1)

Estimate the error in this approximation when |x| < 0.1.

Formula sheet

• Derivatives of inverse trigonometric functions.

$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx}\cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}} \\ \frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2} \qquad \qquad \frac{d}{dx}\cot^{-1}(x) = -\frac{1}{1+x^2} \\ \frac{d}{dx}\sec^{-1}(x) = \frac{1}{x\sqrt{x^2-1}} \qquad \qquad \frac{d}{dx}\csc^{-1}(x) = -\frac{1}{x\sqrt{x^2-1}} \\ \end{cases}$$

• Trigonometric identities.

$$\sin^{2} x + \cos^{2} x = 1$$

$$1 + \tan^{2} x = \sec^{2} x$$

$$1 + \cot^{2} x = \csc^{2} x$$

$$\sin^{2} x = \frac{1}{2}(1 - \cos(2x))$$

$$\cos^{2} x = \frac{1}{2}(1 + \cos(2x))$$

$$\sin x \cos x = \frac{1}{2}\sin(2x)$$

$$\sin x \sin y = \frac{1}{2}\cos(x - y) - \frac{1}{2}\cos(x + y)$$

$$\cos x \cos y = \frac{1}{2}\cos(x - y) + \frac{1}{2}\cos(x + y)$$

$$\sin x \cos y = \frac{1}{2}\sin(x - y) + \frac{1}{2}\sin(x + y)$$

 $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$

• Integrals of trigonometric functions.

$$\int \tan x \, dx = \ln |\sec x| + C$$
$$\int \cot x \, dx = \ln |\sin x| + C$$
$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$
$$\int \csc x \, dx = -\ln |\csc x + \cot x| + C$$

• Trapezoidal Rule and Simpson's Rule.

$$T = \frac{\Delta x}{2} \left(y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n \right)$$
$$S = \frac{\Delta x}{3} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n \right)$$

• Error estimates for Trapezoidal Rule and Simpson's Rule.

$$|E_T| \le \frac{M(b-a)^3}{12n^2}$$
, where $|f''(x)| \le M$ for all x in $[a,b]$
 $|E_S| \le \frac{M(b-a)^5}{180n^4}$, where $|f^{(4)}(x)| \le M$ for all x in $[a,b]$

• Famous Maclaurin series.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{R} = \infty$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \qquad (R = \infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
 (R = \infty)

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} \qquad (R=1)$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} \tag{R=1}$$

• Error estimate for approximations by Taylor polynomials.

$$|R_n(x)| \le \frac{M|x-a|^{n+1}}{(n+1)!},$$

where $|f^{(n+1)}(t)| \leq M$ for all t between a and x.