
Math 242 Final Spring 2017

Name:

Section 1, Thursday 10:30-11:20, Sita Benedict

Section 2, Thursday 1:30-2:20, Sita Benedict

Section 3, Thursday 10:30-11:20, David Yuen

Section 4, Thursday 12:00-12:50, David Yuen

Section 5, Friday 11:30-12:20, Achilles Beros

Section 6, Friday 2:30-3:20, Achilles Beros

Section 7, Friday 8:30-9:20, Piper Harron

Section 8, Friday 9:30-10:20, Piper Harron

Section 9, Friday 10:30-11:20, Les Wilson

Section 10, Friday 1:30-2:20, Les Wilson

Page Points Score

2 8

3 6

4 6

5 8

6 8

7 6

8 9

9 4

10 8

11 12

12 10

13 7

14 10

15 8

Total: 110

• You may not use notes or calculators on the test.

• Please ask if anything seems confusing or ambiguous.

• You must show all your work and make clear what your final solution is (e.g. by drawing a
box around it).

• The last two pages are a formula sheet. You are welcome to remove this from the exam.

• Good luck!



1. Circle either true or false. You do not need to justify your answer.

(a) (2 points) lim
x→+∞

e3x = +∞.

TRUE FALSE

(b) (2 points) lim
x→−∞

e3x = 0.

TRUE FALSE

(c) (4 points) If f is a differentiable and one-to-one function, then

(f−1)′(x) =
−1

f ′(x)
,

provided the denominator is nonzero.

TRUE FALSE
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2. For each of the following definite and indefinite integrals, evaluate it or show that it diverges.

(a) (6 points)

∫ 1

0
2xexdx

Page 3



(b) (6 points)

∫
x2

1 + x2
dx
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(c) (8 points)

∫ 1

−1

3x− 2

x2 + x− 12
dx
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(d) (8 points)

∫ ∞
1

ln(x)

x2
dx
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3. (6 points) Find the derivative of g(x) =
(
sin−1(x)

)x
.
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4. For each, determine if the given limit exists and find it if it does (you must justify any use of
l’Hôpital’s rule).

(a) (4 points) lim
x→0+

√
x ln

(
x3
)

(b) (5 points) lim
x→+∞

x
3/x
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5. (4 points) Find an upper bound for the error (using the relevant formula from the formula

sheet) when one uses the Trapezoidal rule with n = 4 to estimate

∫ 1

−1
ex

2
dx. (Note: you do

not need to find the approximation, only an upper bound for the error).
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6. Circle either true or false. You do not need to justify your answer.

(a) (4 points) The series
∞∑
n=1

(−1)n

n
converges but not absolutely. In other words, it converges

conditionally.

TRUE FALSE

(b) (4 points) The sum of the series

∞∑
n=2

2

5n
is

1

10
.

TRUE FALSE
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7. For each of the following series decide if it converges or diverges and explain why by explicitly
stating which test(s) are used in your solution.

(a) (6 points)

∞∑
n=1

n + 1

n2

(b) (6 points)
∞∑
n=1

tan−1(n)

n2
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8. Consider the power series

∞∑
n=1

(x− 4)n

3n
√
n

.

(a) (2 points) What is the center of the power series?

(b) (6 points) What is radius of convergence of the power series?

(c) (2 points) Does the power series converge absolutely at x = 2? Justify your answer.
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9. (7 points) Compute the Taylor polynomial of order 2 for the function f(x) =
√
x + 4 centered

at x = 0.
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10. (10 points) Find the general solution of the following differential equation

y′ +
1

x
y =

sin3(x)

x
, x > 0.
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11. (8 points) Solve the initial value problem

y′′ − 6y′ + 8y = 0 y(0) = 0, y′(0) = 2
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Formula sheet

• Derivatives of inverse trigonometric functions.

d

dx
sin−1(x) =

1√
1− x2

d

dx
cos−1(x) = − 1√

1− x2

d

dx
tan−1(x) =

1

1 + x2
d

dx
cot−1(x) = − 1

1 + x2

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

d

dx
csc−1(x) = − 1

|x|
√
x2 − 1

• Trigonometric identities.

sin2 x + cos2 x = 1

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x

sin2 x =
1

2
(1− cos(2x))

cos2 x =
1

2
(1 + cos(2x))

sinx cosx =
1

2
sin(2x)

sinx sin y =
1

2
cos(x− y)− 1

2
cos(x + y)

cosx cos y =
1

2
cos(x− y) +

1

2
cos(x + y)

sinx cos y =
1

2
sin(x− y) +

1

2
sin(x + y)

• Integrals of trigonometric functions.∫
tanx dx = ln | secx|+ C∫
cotx dx = ln | sinx|+ C∫
secx dx = ln | secx + tanx|+ C∫
cscx dx = − ln | cscx + cotx|+ C
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• Trapezoidal Rule and Simpson’s Rule.

T =
∆x

2

(
y0 + 2y1 + 2y2 + . . . + 2yn−1 + yn

)
S =

∆x

3

(
y0 + 4y1 + 2y2 + 4y3 + . . . + 2yn−2 + 4yn−1 + yn

)

• Error estimates for Trapezoidal Rule and Simpson’s Rule.

|ET | ≤
M(b− a)3

12n2
, where |f ′′(x)| ≤M for all x in [a, b]

|ES | ≤
M(b− a)5

180n4
, where |f (4)(x)| ≤M for all x in [a, b]

• Famous Maclaurin series.

ex =
∞∑
n=0

xn

n!
(R =∞)

sinx =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
(R =∞)

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
(R =∞)

ln(1 + x) =
∞∑
n=1

(−1)n−1xn

n
(R = 1)

tan−1 x =

∞∑
n=0

(−1)nx2n+1

2n + 1
(R = 1)

• Error estimate for approximations by Taylor polynomials.

|Rn(x)| ≤ M |x− a|n+1

(n + 1)!
,

where |f (n+1)(t)| ≤M for all t between a and x.
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