Exam 1 Review

September 24, 2022

Inverse Functions:

- Know the process of finding inverses.
- Know how to graph the inverse given the graph of the original function.
- Know the differentiation rule

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Exponential and Logarithmic Functions

- Definition: $\log_a(y) = x \iff a^x = y$.
- Limits:

$$\lim_{x \to 0^+} \ln x = -\infty \qquad \lim_{x \to \infty} \ln x = \infty \qquad \lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

• Derivatives:

$$\frac{d}{dx}\ln x = \frac{1}{x} \qquad \qquad \frac{d}{dx}e^x = e^x$$
$$\frac{d}{dx}\log_a(x) = \frac{1}{x\ln a} \qquad \qquad \frac{d}{dx}a^x = a^x\ln a$$

• Integrals:

$$\int e^x \, dx = e^x + C \qquad \int a^x \, dx = \frac{a^x}{\ln a} + C$$
$$\int \frac{1}{x} \, dx = \ln |x| + C$$

- Know the procedure for logarithmic differentiation, and when it is useful.
- Exponential growth/decay:
 - The model applies when the rate of change of a quantity is proportional to the current amount. In symbols, y' = ky.
 - The general solution is always: $y = y_0 e^{kt}$.
 - Always write down your givens, and don't forget units in your answers.
 - Most problems require you to determine y_0 and k. The strategy for finding them depends on the information given in the problem.

Inverse Trig. Functions

• Definitions:

$$\begin{split} \cos^{-1} &: [-1.1] \to [0,\pi] & \cos^{-1}(y) = \theta \iff \cos(\theta) = y \\ \sin^{-1} &: [-1.1] \to [-\pi/2,\pi/2] & \sin^{-1}(y) = \theta \iff \sin(\theta) = y \\ \tan^{-1} &: (-\infty,\infty) \to (-\pi/2,\pi/2) & \tan^{-1}(y) = \theta \iff \tan(\theta) = y \end{split}$$

• Limits:

$$\lim_{x \to -\infty} \tan^{-1}(x) = -\frac{\pi}{2} \qquad \qquad \lim_{x \to \infty} \tan^{-1}(x) = \frac{\pi}{2}$$

• Derivatives:

$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx}\cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2} \qquad \qquad \frac{d}{dx}\cot^{-1}(x) = -\frac{1}{1+x^2}$$
$$\frac{d}{dx}\sec^{-1}(x) = \frac{1}{x\sqrt{x^2-1}} \qquad \qquad \frac{d}{dx}\csc^{-1}(x) = -\frac{1}{x\sqrt{x^2-1}}$$

Limits of Indeterminate Forms

- Type $\frac{0}{0}$ or Type $\frac{\infty}{\infty}$: use L'Hôpital's rule.
- Type $0 \cdot \infty$: use $ab = \frac{b}{1/a}$.
- Type $\infty \infty$: Try to combine into one expression using algebra, identities, etc.
- Type 0^0 , 1^∞ , and ∞^0 : Set the limit equal to L, take ln, then $\ln L$ is of one of the types above. Careful, the answer is e^L , not L.

Integration by Parts

- Integration by parts formula: $\int u dv = uv \int v du$.
- Generally speaking, your choice of u should be something simple to differentiate, and dv should be something simple to integrate.
- The integral $\int v du$ needs to be "easier" to solve than $\int u dv$.
- The mnemonic LIATE (Logarithms, Inverse Trig, Algebraic, Trigonometric, Exponential) is helpful for choosing u.

Trigonometric Integrals

- Sine and Cosine (same angle): $\int \sin^m x \cos^n x dx$
 - Odd power of sine: let $u = \cos x$, then $du = -\sin x dx$ and $\sin^2 x = 1 \cos^x x = 1 u^2$.
 - Odd power of cosine: let $u = \sin x$, then $du = \cos x dx$ and $\cos^2 x = 1 \sin^x = 1 u^2$.
 - Both powers even: use half-angle identities

$$\cos^2 x = \frac{1 + \cos 2x}{2}, \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

- Tangent and Secant: $\int \tan^m x \sec^n x dx$
 - Odd power of tangent: let $u = \sec x$, then $du = \sec x \tan x dx$ and $\tan^2 x = \sec^2 x 1 = u^2 1$

- Even power of secant: let $u = \tan x$, then $du = \sec^2 x dx$ and $\sec^2 x = 1 + \tan^2 x = 1 + u^2$.
- Even power of tangent and odd power of secant: these are tougher and very very very rarely are ever tested. Convert everything to secant using $\tan^2 + 1 = \sec^2 x$ and use the secant reduction formula (we will not cover this).
- Products of cotangent and cosecant are handled similarly as tangent and secant.
- Sine and Cosine (different angle): $\int \sin(mx) \cos(nx) dx$. Use the identities:

$$\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)]$$
$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$
$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

• For other types of expressions, rewrite in terms of sine and cosine.

Trigonometric Substitution

- Pattern $a^2 x^2$: use the substitution $x = a \sin \theta$.
- Pattern $x^2 a^2$: use the substitution $x = a \sec \theta$.
- Pattern $a^2 + x^2$: use the substitution $x = a \tan \theta$.
- After perfoming the substitution you should be left with a trigonometric integral (apply the above techniques).
- To return the result in terms of θ back to x use the right triangle that is determined by the substitution

$$\sin \theta = \frac{x}{a} = \frac{opp}{hyp}, \qquad \sec \theta = \frac{x}{a} = \frac{hyp}{adj}, \qquad \tan \theta = \frac{x}{a} = \frac{opp}{adj}$$

Partial Fraction Decomposition

- Technique for integrating rational functions $\int \frac{p(x)}{q(x)} dx$ where p and q are polynomials.
- If deg $p \ge \deg q$, do long division first. Then do partial fraction decomposition on the remainder.
- To do partial fraction decomposition:
 - 1. Factor the denominator completely into a product of irreducible factors. The degree of each factor must be 1 or 2. A quadratic is irreducible if the *discriminant* $b^2 4ac$ is negative.
 - 2. Write out the partial fraction decomposition abstractly.
 - Linear factors get one unknown constant A.
 - Quadratic factors get two unknown constants Ax + B.
 - If there are repeated factors, then the denominators have increasing powers.
 - 3. Solve for the unknown constants:
 - (a) Clear fractions.
 - (b) Combine like terms.
 - (c) Equate coefficients.
 - (d) Solve this system of equations.
 - 4. Finally, integrate each fraction individually.