Math 242 Homework 1: due 6/17

- 1. Recall that a function is 1-1 if $f(x_1) = f(x_2)$ implies $x_1 = x_2$. Sketch the following functions and determine if they are 1-1 on their domain. If the function is not 1-1, find two points x_1 and x_2 such that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.
 - (a) f(x) = 1/x(b) $f(x) = x^4 + x^2$ (c) $f(x) = \begin{cases} -|x| & x < 0\\ 1 & x = 0\\ 1/x^2 & x > 0 \end{cases}$
- 2. Let $f(x) = x^2 2x + 1$ for $x \ge 1$.
 - (a) Compute f^{-1} . [*hint*: use the quadratic formula].
 - (b) Sketch f and f^{-1} on the same graph.
 - (c) State the domain and range of f^{-1} .

3. Let f(x) = 1/x.

- (a) Show that f is its own inverse.
- (b) Sketch the graph of f. What do you think we can say about a 1-1 functions whose graph is symmetric about the diagonal y = x?
- (c) Use IFT to compute the derivative of f^{-1} .
- 4. Let $f(x) = 4x^2$ for $x \ge 0$.
 - (a) Determine the inverse of f.
 - (b) Sketch f and f^{-1} on the same graph.
 - (c) Show that

$$\left. \frac{df^{-1}}{dx} \right|_{x=f(5)} = \frac{1}{\left. \frac{df}{dx} \right|_{x=5}}$$

- 5. Let $f(x) = (2x-5)^{-1}(x^2-5x)^6$ for x > 5. Determine the value of the derivative of f^{-1} at the point x = f(6). [hint: you do not need to calculate a formula for f^{-1}].
- 6. Suppose g is an invertible, differentiable function whose graph passes through the origin with slope 3. Find the slope of the graph of g^{-1} as it passes through the origin.
- 7. Let f be an increasing function. It's not too difficult to see that f is 1-1. It's clear by vertical line test, but let's use the definition of 1-1 to show it. Suppose $x_1 \neq x_2$, then either $x_1 < x_2$ or $x_2 < x_1$. Since f is increasing the first case implies $f(x_1) < f(x_2)$, in other words, $f(x_1) \neq f(x_2)$. Similar reasoning holds in the other case. Thus, any increasing function is invertible! Maybe not that exciting, but we will use this fact in this problem.
 - (a) Show that $f(x) = (x 1)^3$ is increasing on its domain.
 - (b) Compute f^{-1} .

- (c) Compute f' and find the points x such that f'(x) = 0.
- (d) The above discussion together with part (a) say that f is invertible. If we exclude all the points you find in part (c), then we can apply the IFT to find a formula for $(f^{-1})'$. Do it.
- (e) Confirm your calculation from the previous part by computing the derivative of f^{-1} directly.
- 8. Compute the derivative of the following functions.
 - (a) $y = t(\ln t)^2$ (f) $y = \log_5 e^x$ (b) $y = \ln x^3$ (g) $y = \ln(3\theta e^{-\theta})$ (c) $y = (\ln x)^3$ (h) $y = e^{\theta}(\cos \theta + \sin \theta)$ (d) $y = t\sqrt{\ln t}$ (i) $y = \cos(e^{-x^2})$ (e) $y = (\ln \theta)^{\pi}$ (j) $y = x^{\pi}$
- 9. Evaluate the following integrals.

(a)
$$\int_{2}^{4} \frac{dx}{x(\ln x)^{2}}$$

(b) $\int \frac{8r}{4r^{2}-5} dr$
(c) $\int \frac{\sec y \tan y}{2 + \sec y} dy$
(d) $\int_{0}^{\pi/12} 6\tan(3x) dx$
(e) $\int \frac{dx}{2\sqrt{x}+2x}$
(f) $\int \frac{dx}{1+e^{x}}$
(g) $\int \frac{e^{-1/x^{2}}}{x^{3}} dx$
(h) $\int_{1}^{2} \frac{2^{\ln x}}{x} dx$
(i) $\int_{1}^{e} x^{\ln 2 - 1} dx$
(j) $\int_{1}^{e^{x}} \frac{1}{t} dt$

- 10. Find y' using logarithmic differentiation or implicit differentiation.
 - (a) $y = \tan \theta \sqrt{2\theta + 1}$ (b) $y = \theta \sin \theta (\sec \theta)^{-1/2}$ (c) $y = (\ln x)^{\ln x}$ (d) $\ln y = e^y \sin x$ (e) $\ln xy = e^{x+y}$ (f) $\tan y = e^x + \ln x$
- 11. Solve the initial value problem $y' = e^t \sin(e^t 2)$ with initial condition $y(\ln 2) = 0$.
- 12. Find the area between the curve $y = 2^{1-x}$ and the x-axis between the points -1 and 1. Sketch the graph.
- 13. Define the functions f and g by

$$f(x) = \frac{e^x - e^{-x}}{2}$$
 and $g(x) = \frac{e^x + e^{-x}}{2}$.

- (a) Show that $f(x)^2 g(x)^2 = 1$.
- (b) Show that f'(x) = g(x). (c) Show that $\int f(x)dx = g(x) + C$.