Math 307 Practice Exam 1, Fall 2022

Name:

Question	Points	Score
1	16	
2	5	
3	5	
4	5	
5	8	
6	4	
7	6	
8	10	
9	7	
10	8	
Total:	74	

- You have 75 minutes to complete this exam.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work, unless otherwise indicated. You will get almost no credit for solutions that are not fully justified.
- You may not use notes or calculators on this exam.

- 1. (16 points) True/False questions. No justification necessary.
 - (a) True False The zero space is a linear subspace of every vector space
 - (b) True False The only 1×1 matrices that are in row-reduced echelon form are [0] and [1].
 - (c) True False A matrix of size 3×4 can have 4 leading 1's.
 - (d) True False For all $n \times n$ matrices A, B and C, A(B+C) = AB + AC.
 - (e) True False If det(A) = 0, then A is invertible.
 - (f) True False There exist nonzero square matrices A and B such that $(A+B)^2 = A^2 + B^2$.
 - (g) True False Multiplying a 3×3 matrix A on the left by

[1	0	0
0	7	0
0	0	1

has the effect of scaling every entry in row 2 of A by 7.

- (h) True False Every basis of \mathbb{R}^9 has exactly 9 vectors.
- (i) True False For each invertible matrices A and B the matrix AB is invertible and $(AB)^{-1} = A^{-1}B^{-1}$.
- (j) True False There is a 2×2 invertible matrix that has 3 entries that are 0.
- (k) True False There is a 3×4 matrix A and a 4×3 matrix B such that AB = BA.
- (l) True False A homogeneous system of linear equations $A\vec{x} = \vec{0}$ is always consistent.
- (m) True False If A is not invertible, then A can be row reduced to a matrix with a row of zeros.
- (n) True False For any matrix A, the matrix AA^T is symmetric.
- (o) True False If v_1, \ldots, v_n are linearly independent vectors in \mathbb{R}^n , then they form a basis for \mathbb{R}^n .
- (p) True False For each $n \times n$ matrix A we have det(2A) = 2 det(A).

Matrix	Is in RREF	Is NOT in RREF
0 1 0 0 1 0		
0 0 1 0 0 0		
0 0 0 1 1 0		
0 0 1 0 0 0		

2. (5 points) Which of the following matrices are in RREF. No justification is necessary.

3. (5 points) Which of the following are subspaces of the function space $F(\mathbb{R})$. No justification is necessary.

Set	Is a subspace	Is not a subspace
The space $C^{\infty}(\mathbb{R})$ of all smooth functions.		
The set of functions f in $F(\mathbb{R})$ such that $f(0) = 0$.		
The set of functions f in $F(\mathbb{R})$ such that $f(2) = 2$.		
The polynomials P_3 .		
The set of all constant functions $f_c(x) = c$.		

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

5. (8 points) Define the matrices

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 5 \end{bmatrix}$$

Compute the following, or state that the expression is undefined.

- (a) A(-C)
- (b) CA
- (c) $B^T B$
- (d) BB^T
- (e) C^3

6. (4 points) Solve the linear system of equations

$$x_1 - 7x_2 + x_5 = 3$$

$$x_3 - x_5 = 2$$

$$x_4 + x_5 = 1$$

7. (6 points) Compute the determinant of the matrices:

$$(a) \ A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(b) \ B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$Hint: \text{ do one row operation first.}$$

$$(c) \ C = \begin{bmatrix} 3 & 0 & 0 & 2 \\ 8 & 4 & 7 & 0 \\ 1 & 1 & 0 & -1 \\ 2 & 3 & 0 & 0 \end{bmatrix}$$

8. (10 points) Let

$$\alpha = \left\{ \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\2\\0\\1 \end{bmatrix} \right\}$$

- (a) Are the vectors in α linearly dependent or independent?
- (b) Is the vector

$$\begin{bmatrix} 1\\ -1\\ 2\\ 0 \end{bmatrix}$$

in the span of α .

- (c) Do the vectors in α span \mathbb{R}^4 ? Why?
- (d) Do the vectors in α form a basis for Span(α)? Why?

(e) Find $v \in \mathbb{R}^4$ if

$$[v]_{\alpha} = \begin{bmatrix} 2\\ 7\\ -1 \end{bmatrix}.$$

(more space for problem 8)

9. (7 points) Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} s \\ t \end{bmatrix}$$

where the entries in A and \vec{b} are real numbers and the entries in \vec{x} are variables. Suppose A has nonzero determinant. Use Cramer's rule to derive formulas for the solutions to the system $A\vec{x} = \vec{b}$.

10. (8 points) Let

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 7 & 8 & 3 \\ 4 & 5 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 0 & 0 \\ 4 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

Compute

(a)
$$\det(A^T B)$$

(b) $\det((B^{-1})^3 A^2)$

(c) $\det(A-2B)$