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In much the same way that our attempt to solve the area problem led to the 
a definite integral, we now seek to find the volume of a solid and in the nroni 
at the definition of a double integral. 

15.1 Double Integrals over Rectangles 

process we arrive 
Review of the Definite Integral 

First let's recall the basic facts concerning definite integrals of functions of a 
able. If f(x) is defined for a xsb, we start by dividing the interval [a. hle Va intervals[x-1, Xi] of equal width Ax = (b - a)/n and we choose sample suh 

these subintervals. Then we form the Riemann sum 

s 

points x in 
2f) Ar 

of f from ato b 

and take the limit of such sums as n> 0o to obtain the definite integral of f froe 

2 'b 

de- im flx) Ar 
n o 

In the special case where f(x)> 0, the Riemann sum can be interpreted as tho. the areas of the approximating rectangles in Figure 1, and Ja fx) dx represents under the curve y =f(x) froma to b. 
m of 

Ar 

flx) 

X-1 Xn-1 
0 7 

xi n 

FIGURE 1 

Volumes and Double Integrals 
In a similar manner we consider a function f of two variables defined on a closed rectange fr, y) 

R [a, b] x [c, d] = {a, y) E R*|asxsb,csysd 
and we first suppose that f(x, y) >0. The graph of f is a surface with equation z =fl,). Let S be the solid that lies above R and under the graph of f, that is, 

S= {(x. y, z) E R' |0 sz sfx.y), (x, y) E R} 
R 

(See Figure 2.) Our goal is to find the volume of S. 
The first step is to divide the rectangle Rinto subrectangles. We accomplish this 

dividing the interval [a, b] into m subintervals [x,-1, Ki] of equal width Ax = (b - al 

and dividing lc. d] into n subintervals -1. ] of equal width Ay =(d c 
drawing lines parallel to the coordinate axes through the endpoints of these subinterva 

E2 
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as in Figure 3, we form the subrectangles 

each with area AA == AxAy. 

Ri 

32, i2) 

FIGURE 3 

Ax 
If we choose a sample point ( y) in each Ri, then we can approximate the part Or 

S that lies above each Ri, by a thin rectangular box (or "column") with base Ri, and height 
flaj, yij) as shown in Figure 4. (Compare with Figure 1.) The volume of this bOx is the 

height of the box times the area of the base rectangle: 

Dividing R into subrectangles 

fxj, yj) AA 

If we follow this procedure for all the rectangles and add the volumes of the correspond-

ing boxes, we get an approximation to the total volume of S: 

V 22ft). v) AA 
j=l 

(See Figure 5.) This double sum means that for each subrectangle we evaluate f at the 

chosen point and multiply by the area of the subrectangle, and then we add the results. 

y 

x. 

Rij 
IGURE 4 FIGURE 5 



Cs betC d m and Our intuition tells us that the approxImation given in (3) becomes beller . 

become larger and so we would expect that 

The meaning of the double limit1n 

Equation 4 is that we can make the 

4 
V= lim 22 «j. y) A 

double sum as close as we like to the 
m, n i-jT 

number V|for any choice of (. N) in 

Ril by taking m and n sufficicntly large 
We use the expression in Euation 4 to define the volume of the solid S that ios. under 

the graph of f and above the rectangle R. (It can be shown that this definition is 
tent with our formula for volume in Section 5.2.) 

Limits of the type that appear in Equation 4 occur frequently, not just in findina 

umes but in a varicty of other situations as wellas we will see in Section 15 4 

when f is not a positive function. So we make the following definition. 

consis 

vo 

even 

5 Definition The double integral off over the rectangle R is 

Notice the similarity between 

Sx y) d lim 22 f, y) AA = 

Definition 5 and the definition of a 

m, n "i=lj-l 
Single integral in Equation 2. 

if this limit exists. 

The precise meaning of the limit in Definition 5 is that for every number e>0 there 
is an integer N such that lthough we have defined the double 

ategral by dividing R into equal-sized 

brectangles, we could have used 

brectangles R, of unequal size. But 
en we would have to ensure that all 

their dimensions approach 0 in the 

iting process. for all integers m and n greater than N and for any choice of sample points (xj, y) in R 

A function f is called integrable if the limit in Definition 5 exists. It is shown in 

courses on advanced calculus that all continuous functions are integrable. In fact, the 

double integral of f exists provided that f is "not too discontinuous." In particular. if f 
is bounded on R, [that is, there is a constant M such that fx. y)| M for all (r, y) in R]. 
and f is continuous there, except on a finite number of smooth curves, then f is integrable 
over R. 

The sample point (xj, yj) can be chosen to be any point in the subrectangle R,, but if 
we choose it to be the upper right-hand corner of R, [namely (x, y,), see Figure 3], then 

the expression for the double integral looks simpler: 

6 fx. y) dA = lim 2 fx. y,) AA 
n, n i=l j=L R 

By comparing Definitions 4 and 5, we see that a volume can be written as a double 

integral: 

If fx, y) 0, then the volume V of the solid that lies above the rectangle R and 
below the surface z = f(x, y) is 

V fx. y) da 
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The sum in Definition 5, 

22 sx. y) AA 
i=1 j-U 

s Caled a double Riemann sum and is used as an approximation to the value or tne 

doubie integral. |Notice how similar it is to the Riemann sum in (1) for a function or a 

SIngle vartable.] If f happens to be a positive function, then the double Riemann sum 
TepresentS the sum of volumes of columns, as in Figure 5, and is an approximation tO ne 

volume under the graph of f. 

EXAMPLE 1 Estimate the volume of the solid that lies above the square 
R 10,2] x [0, 2] and below the elliptic paraboloidz = 16 - x 2y. Divide R into 

four equal squares and choose the sample point to be the upper right corner of each 

square Rj. Sketch the solid and the approximating rectangular boxes. 

(1.2) (2,2) 

R22 Ri2 
(2.1) SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of 

flu. y)= 16 - x 2y and the area of each square is AA = 1. Approximating the 

volume by the Riemann sum with m =n = 2, we have 

(1.1 
Ru R21 

V 2 2flxi. y) AA 
i j FIGURE 6 

= f(1, 1) AA + f(1,2) AA + f2, 1) AA + f(2,2) AA 

z= 16-x-2y2 

= 13(1) + 7(1) + 10(1) +4(1) = 34 

This is the volume of the approximating rectangular boxes shown in Figure 7. 

We get better approximations to the volume in Example 1 if we increase the num-

ber of squares. Figure 8 shows how the columns start to look more like the actual solid 

and the corresponding approximations become more accurate when we use 16, 64, and 

256 squares. In Example 7 we will be able to show that the exact volume is 48. 

2 

FIGURE 7 

FIGURE8 
The Riemann sum approximations to 

the volume under z= 16 - x- 2y 
become more accurate as 

m and n increase. (a) m=n =4, V 41.5 (6) m=n= 8, V» 44.875 (c) m=n=16, V= 46.46875 

EXAMPLE 2 IfR = {(x, )| -1sxs1,-2sy s2), evaluate the integral 

- dA 
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ral directly from Delinj. 
SOLUTION I would be verv difticult to evaluate this inlegral directly from Dale 

Thon s but, because 1- (0, we can compute the integral by inter reting N an a 

integr 
Vome. Ifz =I-, then zI and z > 0, so the given double i S 

nd above the rectangle R. (See Figure 9.) The volume of S is the area of a s., 

With radius I times the length of the cylinder. ThuS 

epresents the volume of the solid S that lies below the circular cylinder of ? a semicire al 

(1.0. 0) 
0 2.0) V-' dA n(1) x 4 2 FIGURE 9 

The Midpoint Rule 
The methods that we used for approximating single integrals (the Midpoint Rt 
Trapezoidal Rule, Simpson's Rule) all have counterparts for double integrals, He 

consider only the Midpoint Rule for double integrals. This means that we use a de 

Riemann sum to approximate the double integral, where the sample point (x ) in R is chosen to be the center (F, ) of R, In other words, X, is the midpoint of [, 
is the midpoint of [y-I. M] ,K and 

Midpoint Rule for Double Integrals 

Sa. y) dA 2 2G.,) AA 
i=lj=l 

where x, is the midpoint of [x-1, Xi] and y, is the midpoint of [yj-1. y 

EXAMPLE 3 Use the Midpoint Rule with m = n = 2 to estimate the value of the 
integral l (r - 3y*) dA, where R = {(x, y) | 0x<2,1 sys 2} 
sOLUTION In using the Midpoint Rule with m = n = 2, we evaluate f(x, y) = x - 3y at the centers of the four subrectangles shown in Figure 10. So x=, y = and y4. The area of each subrectangle is AA = 2. Thus (2,2) 

R22 R12 
2 2 

.R21 -3y) dA = 2 Es. ) AA Ri 
R i=l. j=1 

=f. Fi) AA +fl, y2) AA + f2, n) AA + f2, yn) AA 

- f.)AA +f)AA +f)AA +.)AA 2 

- -8)+()+(- +(-) FIGURE 10 

-11.875 

Thus we have (x - 3y) dA = -11.875 

Midpoint Rule 
approximation 

Number of 
NOTE In Example 5 we will see that the exact value of the double integral in Exari ple 3 is-12. (Remember that the interpretation of a double integral as a volume is vai only when the integrand f is a positive function. The integrand in Example 3 is no positive function, so its integral is not a volume. In Examples 5 and 6 we will discus how to interpret integrals of functions that are not always positive in terms of volu 

subrectangles 

-11.5000 
4 -11.8750 

16 -11.9687 

If we keep dividing each subrectangle in Figure 10 into four smaller ones with sinue 

mes.) 64 -11.9922 

shape, we get the Midpoint Rule approximations displayed in the chart in the mar 

milar 256 -11.9980 

- 12. 
1024 -11.9995 

Notice how these approximations approach the exact value of the double integral, 
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Iterated Integrals 
Kecall that it is usually difficult to evaluate single integrals directly from the definition o 

an ntegral, but the Fundamental Theorem of Calculus provides a much easier mend 
ne evaluation of double integrals from first principles is even more difficult, but here w See how to express a double integral as an iterated integral, which can then be evaluat 

by calculating two single integrals. 
Suppose that f is a function of two variables that is integrable on the rectang 

La, bJ X \e, d|. We use the notation fx, y) dy to mean that x is held fixed and 

JW y) Is integrated with respect to y from y = c to y = d. This procedure is called par 

niegration with respect to y. (Notice its similarity to partial differentiation.) Now 
J y) dy is a number that depends on the value of x, so it defines a function of x: 

AC- .dy 
If we noW integrate the function A with respect to x from x = a to x = b, We Bel 

The integral on the right side of Equation 7 is called an iterated integral. Usually the 

brackets are omitted. Thus 

means that we first integrate with respect to y from c to d and then with respect to x from 

a to b. 

Similarly, the iterated integral 

y) dr dy = | ) d« dy 

means that we first integrate with respect to x (holding y fixed) from x =a to x = b and 

then we integrate the resulting function of y with respect to y from y=c to y= d. 

Notice that in both Equations 8 and 9 we work from the inside out. 

EXAMPLE4 Evaluate the iterated integrals. 

()*y dy ds (6) ydsdy 

SOLUTION 

(a) Regarding x as a constant, we obtain 

Thus the function A in the preceding discussion is given by A(x) == jx* in this 

example. We now integrate this function of x from 0 to 3: 

ydy dr-



(b) Here we first integla 

dy 

- o dy 9- -

two 

Notice that in Example 4 we obtained the same answer whether we inte 
auect to v or r first. In general, it turns out (see Theorem 10) that the 

we integrated with 

erated 
does 

ed parnial 

at alter. (This is similar to Clairaut 's Theeorem on the equality of the mixed 

integrals in Equations 8 and 9 are always equal; that is, the order of integration 
derivatives.) 

The following theorem gives a practical method for evaluating a double inteorsl expressing it as an iterated integral (in either order). al by 

10 Fubini's Theorem If f is continuous on the rectangle R {(x, y) | as x<b,c s y s d}, then 
orem 10 is named after the 

an mathematician Guido Fubini 

9-1943). who proved a very gen-

ersion of this theorem in 1907. 

he version for continuous functions 

nown to the French mathematician 
fa. y) dA - ||fx, )dy dx = |x, y) dx dy 

More generally, this is true if we assume that f is bounded on R, f is discontin-uous only on a finite number of smooth curves, and the iterated integrals exist. 

tin-Louis Cauchy almost a cen-

rlier. 

The proof of Fubini's Theorem is too difficult to include in this book, but we cana least give an intuitive indication of why it is true for the case where f(x, y) > 0. Recall that if f is positive, then we can interpret the double integral le fr, y) dA as the volume V of the solid S that lies above R and under the surface z= f(x, y). But we have another formula that we used for volume in Chapter 5, namely, 

C 

O Ax 

V=A(x) dx 

where A(x) is the area of a cross-section of S in the plane through x perpendicular to the 
X-axis. From Figure 11 you can see that A(x) is the area under the curve C whose equa-tion is z =f(x, y), where x is held constant and c y s d. Therefore 

1 

1 15.1 illustrates Fubini's 
showing an animation of 

and 12. 

Ax)- S. y) dy 

and we have 

str. y) dA- V= |A) dx = slx, y) dy dx 
A Similar argument, using cross-sections perpendicular to the y-axis as in Figu 
shows that 

J s.y) dA-I y) dr dy 
R 
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EXAMPLE 5 Evaluate the double integral , (x - 3y*) dA, where 
R= {(x, y) | 0< x2,1 y 2}. (Compare with Example 3.) SOLUTION 1 Fubini's Theorem gives 

t-3y')dA - 3y")dy ds-y -v"'d 
-7) dx= x 

= -12 

SOLUTION 2 Again applying Fubini's Theorem, but this time integrating with respect to r first. we have 

r-3y )dA = 3y')dx dy R 

3xy dy 
Notice the negative answer in 

Example 3: nothing is wrong with 

that. The function f is not a positive 

function. so its integral doesn't repre-

ent a volume. From Figure 13 we see 

that f is always negat1ve on R, so the 

alue of the integral is the negative of 

the volume that lies above the graph of 

r=0 

2 6y)dy - 2y -2y'f- - 12 

fand below R. 

z*-3y 

12 
FIGURE 113 0.5 1 1.5 2 

EXAMPLE 6 Evaluate y sin(xy) dA, where R = [1,2] x [0. T) For a functionf that takes on 

both positive and negative values 
flx. y) dA is a difference of volumes 
V-Vi, where V, is the volume above 
R and below the graph of f., and V2 

is the volume below R and above the 

SOLUTION If we first integrate with respect to x, we get 

Jf y sin(ey) da -ysintry) dx dy 

graph. The fact that the integral in 
Example 6 is 0 means that these two 
Volumes V, and V2 are equal. (See 

Figure 14.) 

-costv)d 

-cos 2y + cos y) dy 

= sin 2y + sin yl=0 

NOTE If we reverse the order of integration and first integrate with respect to y in 

Example 6, we get y sin(xy) 

ysintxy) dA= ysin(xy) dy ds 
L 

R 

FIGURE 14 but this order of integration is much more difneult than the method given in the exampl= 

because it involves integration by parts twice. Therefore, when we evaluate double inte-

grals it is wise to choose the order of integration that gives simpler integrals. 
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EXAMPLE 7 Find the volume of the solid S that is bounded by the ellinti. 
the three coordinate planes 

ic parabolid t2 +z = 16. the planes x = 2 and y= 2, and the thr 
SOLUTION We first observe that S is the solid that lies under the surface 

5 gure 1 

z = 16 - -2y and above the square R = [0, 2j x [0, 2]. (See Fio. solid was considered in Example I, but we are now in a position to evalus)This the double 

2 

integral using Fubini's Theorem. Therefore 

V-f 16 2y) dA -J (16x - 2y)dx dy 

4 

- 16x{ -2y'x), dy 
- (4y) dy - [*y - "] -48 

FIGURE 15 

of 

simple 

In the special case where fx, y) can be factored as the product of a function . 
and a function of y only, the double integral of f can be written in a particularl nly 

o 

hen 

form. To be specific, suppose that flx, y) = gx) h(y) and R = [a, b]x fc. d Fubini's Theorem gives 

gx) h(y) dx|dy 
slx y) dA - gx)h(y) dx dy = 

In the inner integral, y is a constant, so h(y) is a constant and we can write 

Cma-Moar)-f ak9 
sinceg(x) dx is a constant. Therefore, in this case the double integral of f can be writ ten as the product of two single integrals: 

11 gtx) h(y) dA = (glx) dxh(y) dy where R = [a, b] x [c.d] a 

EXAMPLE 8 If R = [0, 7/2] x [0, T/2], then, by Equation 11, 

T/2 m/2 sin x cos y dA = sin x dxcos y dy Jo 

-l-cos xo |sin y- 1 1 =1 

ction flxr, y) = sin x cos y in 

e8 is positive on R, so the 
represents the volume of the 
t lies above R and below the 

f shown in Figure 16. 
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Average Value 
Recall from Section 5.5 that the average value of a function f of one variable defined on 

an interval la, b] is 

In a similar fashion we define the average value of a function f of two variables defined 

on a rectangle R to be 

fave ARSx. y) dA A(R) 
where A(R) is the area of R. 

If f(x, y) > 0, the equation 
A(R) X fve= ||flx, y) dA 

R 

says that the box with base R and height fave has the same volume as the solid that lies 
under the graph of f. [Ifz = fx, y) describes a mountainous region and you chop oft the 

tops of the mountains at height fve, then you can use them to fill in the valleys so that the 

region becomes completely flat. See Figure 17.] GURE 17 

EXAMPLE9 The contour map in Figure 18 shows the snowfall, in inches, that fell on the 
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle 
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to 

estimate the average snowfall for the entire state of Colorado on those days. 

12 

FIGURE 18 

SOLUTION Let's place the origin at the southwest corner of the state. Then 0 x< 38 

0y 276, and f(x, y) is the snowfall, in inches, at a location x miles to the east ar 

y miles to the north of the origin. If R is the rectangle that represents Colorado, then 

average snowfall for the state on December 20-21 was 

A(R) fa.y) dA Jave A(R) R 
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, let's 
where A(R) = 388 276. To estimate the value of this double integral 

ne 16 subrectanges of Midpoint Rule with m =n= 4. In other words, we divide R into I6 Use th 
equal size, as in Figure 19. The area of each subrectangle is 

AA (388)(276) = 6693 mi? 

276 

Z0 

6 

2 60 

FIGURE 19 

Using the contour map to estimate the value of f at the center of each subrectangle. we get 

sa. y) dA- 2 2 s. J) AA 
i=l j=l R 

AA[0 + 15 +8 + 7+2 + 25 + 18.5+ 11 

+4.5 +28 + 17+ 13.5+ 12 + 15 + 17.5 +13 

= (6693)(207) 

(6693)(207) Therefore fave 12.9 
(388)(276) 

On December 20-21, 2006, Colorado received an average of approximately 15 meu hes 

of snow. 



15.1 EXERCISES 

Estimate 

y and 
above the rectangle 

R . y)| 0sx s 6,0 s y s 4 

the volume of the solid that lies below the surface 

1.a 

= 3, n= 2, and take the 
t to be the upper ight corner of each square. 

Rule to estimate the volume of the solid 

10 20 30 

Riemann 
sum with m 

Jse a Rie 

(b) 
Use. the Midpoint 

Rul 

.4] x[-1. 2]. use a Riemann sum with m = 2. 

sample point 

in part (a). 

2. IfR=[0,4] 

2 t0 estimate the value of (=ay') dA. Take the 

20 

0 

noints to be (a) the lower right corners and (6) the upper 
sanmpl 

left 
corners 

of the rectangles. 

1lse a Rienmann sum With ni= n=2to estimate the value 
8. The contour map shows the temperature, in degrees Fahrenheit 

al 4:00 pM on February 26, 2007, in Colorado. (The state mea 

Sures 388 mi west to cast and 276 mi south to north.) Use 
3. (a) 1]. Take the sample 

of l e 
dA. where R= [0. 2] x [0. 

(b) Use the Midpoint Rule to estimate the integral in part (a). 

(a. 
Estimate the volume of the solid that lies below the 

points to be upper right corners. he Midpoint Rule with m= n = 4 to estimate the average 

Iemperature in Colorado at that time. 

surfacez=1tx+ 3y and above the rectangle 

R = [1.2] X [0. 3J. Use a Riemann sum with m = n = 2 

and choose the sample points to be lower left corners. 

h Use the Midpoint Rule to estimate the volume in part (a). 

5. Let V be the volume of the solid that lies under the graph 

of f(x y) = V52- x*-y* and above the rectangle given 

by 2S x 4. 2 y a 6. Use the lines x = 3 and y = 4 to 

divide R into subrectangles. Let L and U be the Riemann sums 

computed using lower left corners and upper right corners, 

respectively. Without calculating the numbers V, L, and U. 

arrange them in increasing order and explain your reasoning. 

6. A 20-ft-by-30-ft swimming pool is filled with water. The depth 

is measured at 5-ft intervals, starting at one corner of the pool. 

and the values are recorded in the table. Estimate the volume of 

water in the pool. 9-11 Evaluate the double intcpral by tirst identitying it as the 

volume of a solid. 

05 10 5 20 25 30 
9. V2 dA. R-{(. v)|2 6, -I ys 5} 

0 2 4 7 8 8 10. , (2.r + ) dA. R-{(. y) |0= *20s y 
s 4} 

2 4 7 8 10 8 11. 4-2y) dA. R-10. 1 x [0. 1| 

10 2 8 10 12 10 

23 
202 222 

15 
12. The integral Wg /9 -y' dA, where R= [0, 4] x [0. 21 

represents the volune of a solid. Sketch the solid. 5 6 8 7 

3 4 
13-14 lind la f(r. v) dr and Jo f(. v) dy 

1. A contour map is shown for a function f on the square 

R = [0.4] x [0. 4] 

13. ( y)- r + 3*y* 14. /(. y)= Vy +2 

a) Use the Midpoint Rule with m = n = 2 t0 estimate the 

value of f(r. y) dA. 
(6) Estimate the average value of f. 

15-26 Caleulate the iterated inlegral. 

15. ( 20 dvd 16. t vdrdy 
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39. Find the volume of the solid lying under the 
ellipti 17. x +e") dx dy 

rectangle 
paraboloid r/4 + y/9 +2 = 1 and above thc 

R=[-1, 1] x [-2, 2]. 18. (sin x+ sin y) dy dx 

40. Find the volume of the solid enclosed by the surf. 

, 
z =x+ xy and the planes z =0, x = 0,x 19. (y +y cos x) dx dy 20. dy dx 
and y = +2. 

41. Find the volume of the solid enclosed by thes 
z = 1 + xye' and the planes z =0, x = 
and y = 1. 

22. ve e" dx dy 
, y=0, 

23. sin'd do d 
42. Find the volume of the solid in the first octant hos unded b the cylinder z =16 - x and the plane y = 5, 24. + dy dr 
43. Find the volume of the solid enclosed by the paraho aboloid z = 2 + x +(y -2)* and the planes z = 1, x = 

x =1, 
25. u+ v du do 26. +t ds dt 

x= -1, y= 0, and y = 4. 

44. Graph the solid that lies between the surface 
27-34 Calculate the double integral. 

ndel 
z = 2xy/(x+ 1) and the plane z =x* 2y and is hun 
by the planes x = 0, x= 2, y = 0,a and y = 4. Then find its 

27. || x seciy dA, R= {(a, y) | 0<xs2,0 y T/4 volume. 

e of the 
E3 45. Use a computer algebra system to find the exact value 

R 

28.(y+xy) dA, R= {{x, y) | 0 < xs 2, 1 y < 2 
integral lJR*'y'e" dA, where R = 10, 1] x [0, 1l Then u the CAS to draw the solid whose volume is given by the 
integral. dA, R= {(x. y) | 0<x<1,-3 y 3} 

30. dA. R={(6.t) |0s0sr/3,0 sts} 

CAS 46. Graph the solid that lies between the surfaces 
=ea cos(x +y) andz =2 - x* 

y1. Use a computer algebra system to approximate the 
volume of this solid correct to four decimal places. 

y for x a1, tan 6 

47-48 Find the average value of f over the given rectangle. 
31. x sin(x + y) dA, R= [0, T/6] X [0, T/3] 

47. flx, y) = x*y, 

R has vertices (-1,0), (-1,5). (1,5). (1, 0) 

48. fx. y) = e'yx + e', R=[0.4] x [0. 1] 

R 

32. dA, R= [0. 1)x [o.1 

33.| ye dA, R = [0, 2] x [0, 3] 

49-50 Use symmetry to evaluate the double integral. 
34. !++ dA, R = [1, 3] x [1, 2] 49. 4dA, R= {(a, y) | -1sxs1,0sys 

50. (1+r'sin y + y'sin x) dA. R =[-7. T]X [-n, 35-36 Sketch the solid whose volume is given by the iterated 

integral. 

CS 51. Use a CAS to compute the iterated integrals 35.4x-2) dk dy 
and t 

36. 2-x* -y')dy dx 
Do the answers contradict Fubini's Theorem? Explain wnal 

is happening. 
37. Find the volume of the solid that lies under the plane 

4x +6y 2z + 15 = 0 and above the rectangle R {x, y) |-1 sxs 2, -1 y s 1. 

52. (a) In what way are the theorems of Fubini and Clairaue 

similar? 
(b) If flr, y) is continuous on [a, b] x [e, d] and 

38. Find the volume of the solid that lies under the hyperbolic paraboloid z = 3y2 - x + 2 and above the rectangle R--11]x [1.2] 
glx, y)= | fl6, ) dt ds 

for a< x <b,c < y <d, show that g, = gr =J,)" 
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