15.1 Double Integrals over Rectangles

Ver Rectangles In much the same way that our attempt to solve the area problem led to the definition of a solid and in the process $w_{e_{n}}$ of In much the same way that our attempt to solve the tree r_{end} and in the process $w_{e}anition$ of a solid and in the process $w_{e}anition$ of a solid and in the process $w_{e}anitophole$ integral.

Review of the Dennie Integrals of functions of a single variable variable v = b, we start by dividing the interval [a, b] into v ariable variable v = b. First let's recall the basic facts concerning domain and the interval [a, b] into $n \sin \beta e^{v_{\text{ati}}}$. able. If f(x) is defined for $a \le x \le b$, we start by dividing the interval [a, b] into $n \sin \beta e^{v_{\text{ati}}}$. able. If f(x) is defined for $a \le x \le p$, we start of x = (b - a)/n and we choose sample points x_{i}^{*} intervals $[x_{i-1}, x_i]$ of equal width $\Delta x = (b - a)/n$ and we choose sample points x_{i}^{*} in

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

and take the limit of such sums as $n \to \infty$ to obtain the definite integral of f from $a_{to b}$

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \, \Delta x$$

In the special case where $f(x) \ge 0$, the Riemann sum can be interpreted as the sum of In the special case where f(x) = 0, the reconstruction of $\int_a^b f(x) dx$ represents the areas of the approximating rectangles in Figure 1, and $\int_a^b f(x) dx$ represents the areas

In a similar manner we consider a function f of two variables defined on a closed rectangle

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}$$

and we first suppose that $f(x, y) \ge 0$. The graph of f is a surface with equation z = f(x, y). Let S be the solid that lies above R and under the graph of f, that is,

$$S = \{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le f(x, y), \ (x, y) \in \mathbb{R} \}$$

(See Figure 2.) Our goal is to find the volume of S.

The first step is to divide the rectangle R into subrectangles. We accomplish this by dividing the interval [a, b] into m subintervals $[x_{i-1}, x_i]$ of equal width $\Delta x = (b - a)/m$ and dividing [c, d] into *n* subintervals $[y_{j-1}, y_j]$ of equal width $\Delta y = (d - c)/n$. By drawing lines parallel to the coordinate axes through the endpoints of these subintervals,

R

FIGURE 1

E 2

1029

as in Figure 3, we form the subrectangles

$$R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] = \{(x, y) \mid x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j\}$$

each with area $\Delta A = \Delta x \, \Delta y$.

FIGURE 3 Dividing *R* into subrectangles

If we choose a sample point (x_{ij}^*, y_{ij}^*) in each R_{ij} , then we can approximate the part of S that lies above each R_{ij} by a thin rectangular box (or "column") with base R_{ij} and height $f(x_{ij}^*, y_{ij}^*)$ as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the height of the box times the area of the base rectangle:

$$f(x_{ij}^*, y_{ij}^*) \Delta A$$

If we follow this procedure for all the rectangles and add the volumes of the corresponding boxes, we get an approximation to the total volume of *S*:

3
$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

(See Figure 5.) This double sum means that for each subrectangle we evaluate f at the chosen point and multiply by the area of the subrectangle, and then we add the results.

Our intuition tells us that the approximation given in (3) becomes better as $m_{and_{h}}$ become larger and so we would expect that

The meaning of the double limit in Equation 4 is that we can make the double sum as close as we like to the number V [for any choice of (x_{ij}^*, y_{ij}^*) in R_{ij}] by taking m and n sufficiently large.

Notice the similarity between Definition 5 and the definition of a single integral in Equation 2.

Ithough we have defined the double stegral by dividing R into equal-sized brectangles, we could have used brectangles R_{ij} of unequal size. But en we would have to ensure that all their dimensions approach 0 in the iting process.

$$V = \lim_{m, n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A$$

We use the expression in Equation 4 to define the **volume** of the solid S that lies u_{nder} the graph of f and above the rectangle R. (It can be shown that this definition is con_{sis} tent with our formula for volume in Section 5.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding $v_{0|}$. umes but in a variety of other situations as well—as we will see in Section 15.4— ev_{eh} when f is not a positive function. So we make the following definition.

5 Definition The **double integral** of f over the rectangle R is

$$\iint_{R} f(x, y) \, dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \, \Delta A$$

if this limit exists.

4

The precise meaning of the limit in Definition 5 is that for every number $\varepsilon > 0$ there is an integer N such that

$$\left| \iint\limits_{R} f(x, y) \, dA \, - \, \sum\limits_{i=1}^{m} \, \sum\limits_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \, \Delta A \right| < \varepsilon$$

for all integers *m* and *n* greater than *N* and for any choice of sample points (x_{ij}^*, y_{ij}^*) in R_{ij} .

A function f is called **integrable** if the limit in Definition 5 exists. It is shown in courses on advanced calculus that all continuous functions are integrable. In fact, the double integral of f exists provided that f is "not too discontinuous." In particular, if f is bounded on R, [that is, there is a constant M such that $|f(x, y)| \leq M$ for all (x, y) in R], and f is continuous there, except on a finite number of smooth curves, then f is integrable over R.

The sample point (x_{ij}^*, y_{ij}^*) can be chosen to be any point in the subrectangle R_{ij} , but if we choose it to be the upper right-hand corner of R_{ij} [namely (x_i, y_j) , see Figure 3], then the expression for the double integral looks simpler:

$$\iint_{R} f(x, y) \, dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i, y_j) \, \Delta A$$

By comparing Definitions 4 and 5, we see that a volume can be written as a double integral:

If $f(x, y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x, y) is

$$V = \iint\limits_R f(x, y) \, dA$$

The sum in Definition 5,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

is called a double Riemann sum and is used as an approximation to the value of the double integral. [Notice how similar it is to the Riemann sum in (1) for a function of a single variable.] If f happens to be a *positive* function, then the double Riemann sum represents the sum of volumes of columns, as in Figure 5, and is an approximation to the volume under the graph of f.

EXAMPLE 1 Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square R_{ij} . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of $f(x, y) = 16 - x^2 - 2y^2$ and the area of each square is $\Delta A = 1$. Approximating the volume by the Riemann sum with m = n = 2, we have

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$

 $= f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$

$$= 13(1) + 7(1) + 10(1) + 4(1) = 34$$

This is the volume of the approximating rectangular boxes shown in Figure 7.

We get better approximations to the volume in Example 1 if we increase the number of squares. Figure 8 shows how the columns start to look more like the actual solid and the corresponding approximations become more accurate when we use 16, 64, and 256 squares. In Example 7 we will be able to show that the exact volume is 48.

 $\iint_{\mathbf{D}} \sqrt{1 - x^2} \, d\mathbf{A}$

EXAMPLE 2 If $R = \{(x, y) \mid -1 \le x \le 1, -2 \le y \le 2\}$, evaluate the integral

FIGURE 6

FIGURE 7

FIGURE 8

The Riemann sum approximations to the volume under $z = 16 - x^2 - 2y^2$ become more accurate as m and n increase.

SOLUTION It would be very difficult to evaluate this integral directly from Definition 5 but, because $\sqrt{1 - x^2} \ge 0$, we can compute the integral by interpreting it $a_{ib}a$ volume. If $z = \sqrt{1 - x^2}$, then $x^2 + z^2 = 1$ and $z \ge 0$, so the given double integral represents the volume of the solid S that lies below the circular cylinder $x^2 + z^2 = 1$ and above the rectangle R. (See Figure 9.) The volume of S is the area of a semicircle with radius 1 times the length of the cylinder. Thus

$$\iint_{R} \sqrt{1 - x^2} \, dA = \frac{1}{2} \pi (1)^2 \times 4 = 2\pi$$

The Midpoint Rule

The methods that we used for approximating single integrals (the Midpoint Rule, the Trapezoidal Rule, Simpson's Rule) all have counterparts for double integrals. Here we consider only the Midpoint Rule for double integrals. This means that we use a double Riemann sum to approximate the double integral, where the sample point (x_{ij}^*, y_{ij}^*) in R_{ij} is chosen to be the center (\bar{x}_i, \bar{y}_j) of R_{ij} . In other words, \bar{x}_i is the midpoint of $[x_{i-1}, x_i]$ and \bar{y}_j is the midpoint of $[y_{j-1}, y_j]$.

Midpoint Rule for Double Integrals

$$\iint\limits_{\mathbb{R}} f(x, y) \, dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(\bar{x}_i, \bar{y}_j) \, \Delta A$$

where \bar{x}_i is the midpoint of $[x_{i-1}, x_i]$ and \bar{y}_j is the midpoint of $[y_{j-1}, y_i]$.

EXAMPLE 3 Use the Midpoint Rule with m = n = 2 to estimate the value of the integral $\iint_R (x - 3y^2) dA$, where $R = \{(x, y) \mid 0 \le x \le 2, 1 \le y \le 2\}$.

SOLUTION In using the Midpoint Rule with m = n = 2, we evaluate $f(x, y) = x - 3y^2$ at the centers of the four subrectangles shown in Figure 10. So $\bar{x}_1 = \frac{1}{2}$, $\bar{x}_2 = \frac{3}{2}$, $\bar{y}_1 = \frac{5}{4}$, and $\bar{y}_2 = \frac{7}{4}$. The area of each subrectangle is $\Delta A = \frac{1}{2}$. Thus

$$\iint_{R} (x - 3y^{2}) dA \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\bar{x}_{i}, \bar{y}_{j}) \Delta A$$

= $f(\bar{x}_{1}, \bar{y}_{1}) \Delta A + f(\bar{x}_{1}, \bar{y}_{2}) \Delta A + f(\bar{x}_{2}, \bar{y}_{1}) \Delta A + f(\bar{x}_{2}, \bar{y}_{2}) \Delta A$
= $f(\frac{1}{2}, \frac{5}{4}) \Delta A + f(\frac{1}{2}, \frac{7}{4}) \Delta A + f(\frac{3}{2}, \frac{5}{4}) \Delta A + f(\frac{3}{2}, \frac{7}{4}) \Delta A$
= $(-\frac{67}{16})\frac{1}{2} + (-\frac{139}{16})\frac{1}{2} + (-\frac{51}{16})\frac{1}{2} + (-\frac{123}{16})\frac{1}{2}$
= $-\frac{95}{8} = -11.875$

Thus we have

NOTE In Example 5 we will see that the exact value of the double integral in Example 3 is -12. (Remember that the interpretation of a double integral as a volume is valid only when the integrand f is a *positive* function. The integrand in Example 3 is not a positive function, so its integral is not a volume. In Examples 5 and 6 we will discuss how to interpret integrals of functions that are not always positive in terms of volumes.) If we keep dividing each subrectangle in Figure 10 into four smaller ones with similar shape, we get the Midpoint Rule approximations displayed in the chart in the margin. Notice how these approximations approach the exact value of the double integral, -12.

 $\iint\limits_{R} (x - 3y^2) \, dA \approx -11.875$

Number of subrectangles	Midpoint Rule approximation
1	-11.5000
4	-11.8750
16	-11.9687
64	-11.9922
256	-11.9980
1024	-11.9995

Iterated Integrals

Recall that it is usually difficult to evaluate single integrals directly from the definition of an integral, but the Fundamental Theorem of Calculus provides a much easier method. The evaluation of double integrals from first principles is even more difficult, but here we see how to express a double integral as an iterated integral, which can then be evaluated by calculating two single integrals.

Suppose that f is a function of two variables that is integrable on the rectangle $R = [a, b] \times [c, d]$. We use the notation $\int_c^d f(x, y) dy$ to mean that x is held fixed and f(x, y) is integrated with respect to y from y = c to y = d. This procedure is called *partial integration with respect to y*. (Notice its similarity to partial differentiation.) Now $\int_c^d f(x, y) dy$ is a number that depends on the value of x, so it defines a function of x:

$$A(x) = \int_c^d f(x, y) \, dy$$

If we now integrate the function A with respect to x from x = a to x = b, we get

7
$$\int_{a}^{b} A(x) \, dx = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx$$

The integral on the right side of Equation 7 is called an **iterated integral**. Usually the brackets are omitted. Thus

8
$$\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_a^b \left[\int_c^d f(x, y) \, dy \right] dx$$

means that we first integrate with respect to y from c to d and then with respect to x from a to b.

Similarly, the iterated integral

9
$$\int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \, dx \right] dy$$

means that we first integrate with respect to x (holding y fixed) from x = a to x = b and then we integrate the resulting function of y with respect to y from y = c to y = d. Notice that in both Equations 8 and 9 we work *from the inside out*.

EXAMPLE 4 Evaluate the iterated integrals.

(a)
$$\int_0^3 \int_1^2 x^2 y \, dy \, dx$$
 (b) $\int_1^2 \int_0^3 x^2 y \, dx \, dy$

SOLUTION

(a) Regarding x as a constant, we obtain

$$\int_{1}^{2} x^{2} y \, dy = \left[x^{2} \frac{y^{2}}{2} \right]_{y=1}^{y=2} = x^{2} \left(\frac{2^{2}}{2} \right) - x^{2} \left(\frac{1^{2}}{2} \right) = \frac{3}{2} x^{2}$$

Thus the function A in the preceding discussion is given by $A(x) = \frac{3}{2}x^2$ in this example. We now integrate this function of x from 0 to 3:

$$\int_{0}^{3} \int_{1}^{2} x^{2} y \, dy \, dx = \int_{0}^{3} \left[\int_{1}^{2} x^{2} y \, dy \right] dx$$
$$= \int_{0}^{3} \frac{3}{2} x^{2} \, dx = \frac{x^{3}}{2} \bigg]_{0}^{3} = \frac{27}{2}$$

(b) Here we first integrate with the

$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy = \int_{1}^{2} \left[\int_{0}^{3} x^{2} y \, dx \right] dy = \int_{1}^{2} \left[\frac{x^{3}}{3} y \right]_{x=0}^{x=3} dy$$
$$= \int_{1}^{2} 9y \, dy = 9 \frac{y^{2}}{2} \bigg]_{1}^{2} = \frac{27}{2}$$

Notice that in Example 4 we obtained the same answer whether we integrated with respect to y or x first. In general, it turns out (see Theorem 10) that the two iterated integrals in Equations 8 and 9 are always equal; that is, the order of integration d_{0e_s} not matter. (This is similar to Clairaut's Theorem on the equality of the mixed partial derivatives.)

The following theorem gives a practical method for evaluating a double integral by expressing it as an iterated integral (in either order).

10 Fubini's Theorem If f is continuous on the rectangle $R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint\limits_R f(x, y) \, dA = \int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

The proof of Fubini's Theorem is too difficult to include in this book, but we can at least give an intuitive indication of why it is true for the case where $f(x, y) \ge 0$. Recall that if f is positive, then we can interpret the double integral $\iint_R f(x, y) dA$ as the volume V of the solid S that lies above R and under the surface z = f(x, y). But we have another formula that we used for volume in Chapter 5, namely,

$$V = \int_{a}^{b} A(x) \, dx$$

where A(x) is the area of a cross-section of S in the plane through x perpendicular to the x-axis. From Figure 11 you can see that A(x) is the area under the curve C whose equation is z = f(x, y), where x is held constant and $c \le y \le d$. Therefore

$$A(x) = \int_{c}^{d} f(x, y) \, dy$$

and we have

$$\iint\limits_R f(x, y) \, dA = V = \int_a^b A(x) \, dx = \int_a^b \int_c^d f(x, y) \, dy \, dx$$

A similar argument, using cross-sections perpendicular to the y-axis as in Figure ¹ shows that

$$\iint\limits_{R} f(x, y) \, dA = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$$

Forem 10 is named after the an mathematician Guido Fubini 9–1943), who proved a very genversion of this theorem in 1907. the version for continuous functions nown to the French mathematician stin-Louis Cauchy almost a cenarlier.

1 15.1 illustrates Fubini's showing an animation of and 12.

EXAMPLE 5 Evaluate the double integral $\iint_{R} (x - 3y^2) dA$, where $R = \{(x, y) \mid 0 \le x \le 2, 1 \le y \le 2\}. \text{ (Compare with Example 3.)}$

SOLUTION 1 Fubini's Theorem gives

$$\iint_{R} (x - 3y^{2}) dA = \int_{0}^{2} \int_{1}^{2} (x - 3y^{2}) dy dx = \int_{0}^{2} \left[xy - y^{3} \right]_{y=1}^{y=2} dx$$
$$= \int_{0}^{2} (x - 7) dx = \frac{x^{2}}{2} - 7x \Big]_{0}^{2} = -12$$

SOLUTION 2 Again applying Fubini's Theorem, but this time integrating with respect

$$\int_{R}^{\infty} (x - 3y^{2}) dA = \int_{1}^{2} \int_{0}^{2} (x - 3y^{2}) dx dy$$
$$= \int_{1}^{2} \left[\frac{x^{2}}{2} - 3xy^{2} \right]_{x=0}^{x=2} dy$$
$$= \int_{1}^{2} (2 - 6y^{2}) dy = 2y - 2y^{3} \Big]_{1}^{2} = -12$$

Notice the negative answer in Example 5; nothing is wrong with that. The function f is not a positive function, so its integral doesn't represent a volume. From Figure 13 we see that f is always negative on R, so the value of the integral is the negative of the volume that lies above the graph of f and below R.

FIGURE 13

For a function f that takes on both positive and negative values, $\|_{P} f(x, y) dA$ is a difference of volumes: $V_1 - V_2$, where V_1 is the volume above R and below the graph of f, and V_2 is the volume below R and above the graph. The fact that the integral in Example 6 is 0 means that these two volumes V_1 and V_2 are equal. (See Figure 14.)

EXAMPLE 6 Evaluate $\iint_R y \sin(xy) dA$, where $R = [1, 2] \times [0, \pi]$.

SOLUTION If we first integrate with respect to x, we get

$$\iint_{R} y \sin(xy) \, dA = \int_{0}^{\pi} \int_{1}^{2} y \sin(xy) \, dx \, dy$$
$$= \int_{0}^{\pi} \left[-\cos(xy) \right]_{x=1}^{x=2} \, dy$$
$$= \int_{0}^{\pi} \left(-\cos 2y + \cos y \right) \, dy$$
$$= -\frac{1}{2} \sin 2y + \sin y \Big]_{0}^{\pi} = 0$$

NOTE If we reverse the order of integration and first integrate with respect to y in Example 6, we get

$$\iint_{R} y \sin(xy) \, dA = \int_{1}^{2} \int_{0}^{\pi} y \sin(xy) \, dy \, dx$$

but this order of integration is much more difficult than the method given in the exampl because it involves integration by parts twice. Therefore, when we evaluate double inte grals it is wise to choose the order of integration that gives simpler integrals.

EXAMPLE 7 Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes. **SOLUTION** We first observe that S is the solid that lies under the surface $z = 16 - x^2 - 2y^2$ and above the square $R = [0, 2] \times [0, 2]$. (See Figure 15.) This solid was considered in Example 1, but we are now in a position to evaluate the d_{ouble} integral using Fubini's Theorem. Therefore $V = \iint (16 - x^2 - 2y^2) dA = \int_{0}^{2} \int_{0}^{2} (16 - x^2) dA = \int_{0}^{2} (16 - x$

$$V = \iint_{R} (16 - x^{2} - 2y^{2}) dA = \int_{0}^{2} \int_{0}^{2} (16 - x^{2} - 2y^{2}) dx dy$$
$$= \int_{0}^{2} \left[16x - \frac{1}{3}x^{3} - 2y^{2}x \right]_{x=0}^{x=2} dy$$
$$= \int_{0}^{2} \left(\frac{88}{3} - 4y^{2} \right) dy = \left[\frac{88}{3}y - \frac{4}{3}y^{3} \right]_{0}^{2} = 48$$

In the special case where f(x, y) can be factored as the product of a function of x_{only} and a function of y only, the double integral of f can be written in a particularly simple form. To be specific, suppose that f(x, y) = g(x)h(y) and $R = [a, b] \times [c, d]$. Then Fubini's Theorem gives

$$\iint\limits_R f(x, y) \, dA = \int_c^d \int_a^b g(x) h(y) \, dx \, dy = \int_c^d \left[\int_a^b g(x) h(y) \, dx \right] dy$$

In the inner integral, y is a constant, so h(y) is a constant and we can write

$$\int_{c}^{d} \left[\int_{a}^{b} g(x) h(y) \, dx \right] dy = \int_{c}^{d} \left[h(y) \left(\int_{a}^{b} g(x) \, dx \right) \right] dy = \int_{a}^{b} g(x) \, dx \int_{c}^{d} h(y) \, dy$$

since $\int_{a}^{b} g(x) dx$ is a constant. Therefore, in this case the double integral of f can be written as the product of two single integrals:

11
$$\iint_{R} g(x) h(y) dA = \int_{a}^{b} g(x) dx \int_{c}^{d} h(y) dy \quad \text{where } R = [a, b] \times [c, d]$$

EXAMPLE 8 If $R = [0, \pi/2] \times [0, \pi/2]$, then, by Equation 11,

$$\iint_{R} \sin x \cos y \, dA = \int_{0}^{\pi/2} \sin x \, dx \int_{0}^{\pi/2} \cos y \, dy$$
$$= \left[-\cos x \right]_{0}^{\pi/2} \left[\sin y \right]_{0}^{\pi/2} = 1 \cdot 1 = 1$$

ction $f(x, y) = \sin x \cos y$ in e 8 is positive on R, so the represents the volume of the t lies above R and below the f shown in Figure 16.

Average Value

Recall from Section 5.5 that the average value of a function f of one variable defined on an interval [a, b] is

$$f_{\rm ave} = \frac{1}{b-a} \int_a^b f(x) \, dx$$

In a similar fashion we define the **average value** of a function f of two variables defined on a rectangle R to be

$$f_{\rm ave} = \frac{1}{A(R)} \iint_R f(x, y) \, dA$$

where A(R) is the area of R. If $f(x, y) \ge 0$, the equation

$$A(R) \times f_{\text{ave}} = \iint_{R} f(x, y) \, dA$$

says that the box with base R and height f_{ave} has the same volume as the solid that lies under the graph of f. [If z = f(x, y) describes a mountainous region and you chop off the tops of the mountains at height f_{ave} , then you can use them to fill in the valleys so that the region becomes completely flat. See Figure 17.]

EXAMPLE 9 The contour map in Figure 18 shows the snowfall, in inches, that fell on the state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle that measures 388 mi west to east and 276 mi south to north.) Use the contour map to estimate the average snowfall for the entire state of Colorado on those days.

FIGURE 18

SOLUTION Let's place the origin at the southwest corner of the state. Then $0 \le x \le 38$ $0 \le y \le 276$, and f(x, y) is the snowfall, in inches, at a location x miles to the east at y miles to the north of the origin. If R is the rectangle that represents Colorado, then y average snowfall for the state on December 20–21 was

$$f_{\text{ave}} = \frac{1}{A(R)} \iint_{R} f(x, y) \, dA$$

GURE 17

where $A(R) = 388 \cdot 276$. To estimate the value of this double integral, let's use the Midpoint Rule with m = n = 4. In other words, we divide *R* into 16 subrectangles equal size, as in Figure 19. The area of each subrectangle is

$$\Delta A = \frac{1}{16}(388)(276) = 6693 \text{ mj}^2$$

Using the contour map to estimate the value of f at the center of each subrectangle, we get

$$\iint_{R} f(x, y) \, dA \approx \sum_{i=1}^{4} \sum_{j=1}^{4} f(\bar{x}_{i}, \bar{y}_{j}) \, \Delta A$$
$$\approx \Delta A [0 + 15 + 8 + 7 + 2 + 25 + 18.5 + 11 + 4.5 + 28 + 17 + 13.5 + 12 + 15 + 17.5 + 13]$$
$$= (6693)(207)$$

Therefore

$$f_{\rm ave} \approx \frac{(6693)(207)}{(388)(276)} \approx 12.9$$

On December 20–21, 2006, Colorado received an average of approximately 13 inches of snow.

15.1 EXERCISES 1. (a) Estimate the volume of the solid that lies below the surface $z = x^{y}$ and above the rectangle

 $R = \{ (x, y) \mid 0 \le x \le 6, 0 \le y \le 4 \}$

Use a Riemann sum with m = 3, n = 2, and take the Use a line to be the upper right corner of each square. (b) Use the Midpoint Rule to estimate the volume of the solid

in part (a).

2. If $R = [0, 4] \times [-1, 2]$, use a Riemann sum with m = 2, If $K = 10^{\circ}$, is the value of $\iint_{R} (1 - xy^{2}) dA$. Take the n = 3 to estimate to be (a) the lower right. n = 3 to be (a) the lower right corners and (b) the upper sample points to be rectangles left corners of the rectangles.

- **3.** (a) Use a Riemann sum with m = n = 2 to estimate the value $R = \begin{bmatrix} 0 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \end{bmatrix} = 0$ of $\iint_R xe^{-xy} dA$, where $R = [0, 2] \times [0, 1]$. Take the sample points to be upper right corners.
 - (b) Use the Midpoint Rule to estimate the integral in part (a).
- **4.** (a) Estimate the volume of the solid that lies below the
- surface $z = 1 + x^2 + 3y$ and above the rectangle $R = [1, 2] \times [0, 3]$. Use a Riemann sum with m = n = 2and choose the sample points to be lower left corners. (b) Use the Midpoint Rule to estimate the volume in part (a).
- 5. Let V be the volume of the solid that lies under the graph of $f(x, y) = \sqrt{52 - x^2 - y^2}$ and above the rectangle given by $2 \le x \le 4$, $2 \le y \le 6$. Use the lines x = 3 and y = 4 to divide R into subrectangles. Let L and U be the Riemann sums computed using lower left corners and upper right corners, respectively. Without calculating the numbers V, L, and U, arrange them in increasing order and explain your reasoning.
- 6. A 20-ft-by-30-ft swimming pool is filled with water. The depth is measured at 5-ft intervals, starting at one corner of the pool, and the values are recorded in the table. Estimate the volume of water in the pool.

	0	5	10	15	20	25	30
0	2	3	4	6	7	8	8
5	2	3	4	7	8	10	8
10	2	4	6	8	10	12	10
15	2	3	4	5	6	8	7
20	2	2	2	2	3	4	4

- 7. A contour map is shown for a function f on the square $R = [0, 4] \times [0, 4]$
 - (a) Use the Midpoint Rule with m = n = 2 to estimate the value of $\iint_{R} f(x, y) dA$.
 - (b) Estimate the average value of f.

8. The contour map shows the temperature, in degrees Fahrenheit. at 4:00 PM on February 26, 2007, in Colorado. (The state measures 388 mi west to east and 276 mi south to north.) Use the Midpoint Rule with m = n = 4 to estimate the average temperature in Colorado at that time.

9-11 Evaluate the double integral by first identifying it as the volume of a solid.

- **9.** $\iint_R \sqrt{2} \, dA$, $R = \{(x, y) \mid 2 \le x \le 6, -1 \le y \le 5\}$ **10.** $\iint_{R} (2x + 1) dA$, $R = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le 4\}$ **11.** $\iint_{R} (4 - 2y) \, dA, \quad R = [0, 1] \times [0, 1]$
- **12.** The integral $\iint_{R} \sqrt{9 y^2} \, dA$, where $R = [0, 4] \times [0, 2]$, represents the volume of a solid. Sketch the solid.

13–14 Find
$$\int_0^2 f(x, y) dx$$
 and $\int_0^\lambda f(x, y) dy$
13. $f(x, y) = x + 3x^2y^2$
14. $f(x, y) = y\sqrt{x+2}$

- 15–26 Calculate the iterated integral.
- **15.** $\int_{1}^{4} \int_{0}^{2} (6x^2y 2x) \, dy \, dx$ **16.** $\int_{0}^{1} \int_{0}^{1} (x + y)^2 \, dx \, dy$

17.
$$\int_{0}^{1} \int_{1}^{2} (x + e^{-y}) dx dy$$

18.
$$\int_{0}^{\pi/6} \int_{0}^{\pi/2} (\sin x + \sin y) dy dx$$

19.
$$\int_{-3}^{3} \int_{0}^{\pi/2} (y + y^{2} \cos x) dx dy$$

20.
$$\int_{1}^{3} \int_{1}^{5} \frac{\ln y}{xy} dy dx$$

21.
$$\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) dy dx$$

22.
$$\int_{0}^{1} \int_{0}^{2} y e^{x-y} dx dy$$

23.
$$\int_{0}^{3} \int_{0}^{\pi/2} t^{2} \sin^{3}\phi d\phi dt$$

24.
$$\int_{0}^{1} \int_{0}^{1} xy \sqrt{x^{2} + y^{2}} dy dx$$

25.
$$\int_{0}^{1} \int_{0}^{1} v(u + v^{2})^{4} du dv$$

26.
$$\int_{0}^{1} \int_{0}^{1} \sqrt{s + t} ds dt$$

- 27–34 Calculate the double integral.
- 27. $\iint_{R} x \sec^{2} y \, dA, \quad R = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le \pi/4\}$ 28. $\iint_{R} (y + xy^{-2}) \, dA, \quad R = \{(x, y) \mid 0 \le x \le 2, 1 \le y \le 2\}$ 29. $\iint_{R} \frac{xy^{2}}{x^{2} + 1} \, dA, \quad R = \{(x, y) \mid 0 \le x \le 1, -3 \le y \le 3\}$ 30. $\iint_{R} \frac{\tan \theta}{\sqrt{1 t^{2}}} \, dA, \quad R = \{(\theta, t) \mid 0 \le \theta \le \pi/3, 0 \le t \le \frac{1}{2}\}$ 31. $\iint_{R} x \sin(x + y) \, dA, \quad R = [0, \pi/6] \times [0, \pi/3]$ 32. $\iint_{R} \frac{x}{1 + xy} \, dA, \quad R = [0, 1] \times [0, 1]$ 33. $\iint_{R} ye^{-xy} \, dA, \quad R = [0, 2] \times [0, 3]$ 34. $\iint_{R} \frac{1}{1 + x + y} \, dA, \quad R = [1, 3] \times [1, 2]$

35–36 Sketch the solid whose volume is given by the iterated integral.

35.
$$\int_0^1 \int_0^1 (4 - x - 2y) \, dx \, dy$$

36. $\int_0^1 \int_0^1 (2 - x^2 - y^2) \, dy \, dx$

- **37.** Find the volume of the solid that lies under the plane 4x + 6y 2z + 15 = 0 and above the rectangle $R = \{(x, y) \mid -1 \le x \le 2, -1 \le y \le 1\}.$
- **38.** Find the volume of the solid that lies under the hyperbolic paraboloid $z = 3y^2 x^2 + 2$ and above the rectangle $R = [-1, 1] \times [1, 2]$.

- **39.** Find the volume of the solid lying under the elliptic paraboloid $x^2/4 + y^2/9 + z = 1$ and above the rectangle $R = [-1, 1] \times [-2, 2]$.
- **40.** Find the volume of the solid enclosed by the surface $z = x^2 + xy^2$ and the planes z = 0, x = 0, x = 5, and $y = \pm 2$.
- **41.** Find the volume of the solid enclosed by the surface $z = 1 + x^2 y e^y$ and the planes z = 0, $x = \pm 1$, y = 0, and y = 1.
- **42.** Find the volume of the solid in the first octant bounded by the cylinder $z = 16 x^2$ and the plane y = 5.
- **43.** Find the volume of the solid enclosed by the paraboloid $z = 2 + x^2 + (y 2)^2$ and the planes z = 1, x = 1, x = -1, y = 0, and y = 4.
- 44. Graph the solid that lies between the surface $z = 2xy/(x^2 + 1)$ and the plane z = x + 2y and is bounded by the planes x = 0, x = 2, y = 0, and y = 4. Then find its volume.
- **45.** Use a computer algebra system to find the exact value of the integral $\iint_R x^5 y^3 e^{xy} dA$, where $R = [0, 1] \times [0, 1]$. Then use the CAS to draw the solid whose volume is given by the integral.
- **46.** Graph the solid that lies between the surfaces $z = e^{-x^2} \cos(x^2 + y^2)$ and $z = 2 x^2 y^2$ for $|x| \le 1$, $|y| \le 1$. Use a computer algebra system to approximate the volume of this solid correct to four decimal places.
 - **47–48** Find the average value of f over the given rectangle.
 - **47.** $f(x, y) = x^2 y$, *R* has vertices (-1, 0), (-1, 5), (1, 5), (1, 0)**48.** $f(x, y) = e^y \sqrt{x + e^y}$, $R = [0, 4] \times [0, 1]$

49–50 Use symmetry to evaluate the double integral.

- **49.** $\iint_{R} \frac{xy}{1+x^{4}} dA, \quad R = \{(x, y) \mid -1 \le x \le 1, 0 \le y \le 1\}$ **50.** $\iint_{R} (1 + x^{2} \sin y + y^{2} \sin x) dA, \quad R = [-\pi, \pi] \times [-\pi, \pi]$
- **51.** Use a CAS to compute the iterated integrals

 $\int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dy \, dx \qquad \text{and} \qquad \int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dx \, dy$

Do the answers contradict Fubini's Theorem? Explain what is happening.

- **52.** (a) In what way are the theorems of Fubini and Clairaut similar?
 - (b) If f(x, y) is continuous on $[a, b] \times [c, d]$ and

$$g(x, y) = \int_a^x \int_c^y f(s, t) \, dt \, ds$$

for a < x < b, c < y < d, show that $g_{xy} = g_{yx} = f(x, y)^{b}$.